当前位置: 首页>>代码示例>>Python>>正文


Python functional.adjust_gamma方法代码示例

本文整理汇总了Python中torchvision.transforms.functional.adjust_gamma方法的典型用法代码示例。如果您正苦于以下问题:Python functional.adjust_gamma方法的具体用法?Python functional.adjust_gamma怎么用?Python functional.adjust_gamma使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.transforms.functional的用法示例。


在下文中一共展示了functional.adjust_gamma方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cv_transform

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def cv_transform(img):
    # img = resize(img, size=(100, 300))
    # img = to_tensor(img)
    # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
    # img = crop(img, -40, -20, 1000, 1000)
    # img = center_crop(img, (310, 300))
    # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = hflip(img)
    # img = vflip(img)
    # tl, tr, bl, br, center = five_crop(img, 100)
    # img = adjust_brightness(img, 2.1)
    # img = adjust_contrast(img, 1.5)
    # img = adjust_saturation(img, 2.3)
    # img = adjust_hue(img, 0.5)
    # img = adjust_gamma(img, gamma=3, gain=0.1)
    # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
    # img = to_grayscale(img, 3)
    # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
    # img = gaussion_noise(img)
    # img = poisson_noise(img)
    img = salt_and_pepper(img)
    return to_tensor(img) 
开发者ID:YU-Zhiyang,项目名称:opencv_transforms_torchvision,代码行数:26,代码来源:cvfunctional.py

示例2: pil_transform

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def pil_transform(img):
    # img = functional.resize(img, size=(100, 300))
    # img = functional.to_tensor(img)
    # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
    # img = functional.crop(img, -40, -20, 1000, 1000)
    # img = functional.center_crop(img, (310, 300))
    # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = functional.hflip(img)
    # img = functional.vflip(img)
    # tl, tr, bl, br, center = functional.five_crop(img, 100)
    # img = functional.adjust_brightness(img, 2.1)
    # img = functional.adjust_contrast(img, 1.5)
    # img = functional.adjust_saturation(img, 2.3)
    # img = functional.adjust_hue(img, 0.5)
    # img = functional.adjust_gamma(img, gamma=3, gain=0.1)
    # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
    # img = functional.to_grayscale(img, 3)
    # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))

    return functional.to_tensor(img) 
开发者ID:YU-Zhiyang,项目名称:opencv_transforms_torchvision,代码行数:24,代码来源:cvfunctional.py

示例3: adjust_gamma

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def adjust_gamma(img, gamma, gain=1):
    """Perform gamma correction on an image.

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

        I_out = 255 * gain * ((I_in / 255) ** gamma)

    See https://en.wikipedia.org/wiki/Gamma_correction for more details.

    Args:
        img (np.ndarray): CV Image to be adjusted.
        gamma (float): Non negative real number. gamma larger than 1 make the
            shadows darker, while gamma smaller than 1 make dark regions
            lighter.
        gain (float): The constant multiplier.
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    im = img.astype(np.float32)
    im = 255. * gain * np.power(im / 255., gamma)
    im = im.clip(min=0., max=255.)
    return im.astype(img.dtype) 
开发者ID:YU-Zhiyang,项目名称:opencv_transforms_torchvision,代码行数:29,代码来源:cvfunctional.py

示例4: gamma

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def gamma(self, gamma_ratio):
        self.data = TF.adjust_gamma(self.data, gamma_ratio, gain=1) 
开发者ID:MichaelRamamonjisoa,项目名称:SharpNet,代码行数:4,代码来源:representations.py

示例5: __call__

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def __call__(self, img, mask):
        assert img.size == mask.size
        return tf.adjust_gamma(img, random.uniform(1, 1 + self.gamma)), mask 
开发者ID:RogerZhangzz,项目名称:CAG_UDA,代码行数:5,代码来源:augmentations.py

示例6: __call__

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def __call__(self, img):
        if random.random() < 0.5:
            gamma = random.uniform(self.gamma_range[0],self.gamma_range[1])
            return  TrF.adjust_gamma(img, gamma)
        else: 
            return img

# ===============================label tranforms============================ 
开发者ID:gjy3035,项目名称:NWPU-Crowd-Sample-Code,代码行数:10,代码来源:transforms.py

示例7: torchvision_transform

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_gamma [as 别名]
def torchvision_transform(self, img):
        return torchvision.adjust_gamma(img, gamma=0.5) 
开发者ID:albumentations-team,项目名称:albumentations,代码行数:4,代码来源:benchmark.py


注:本文中的torchvision.transforms.functional.adjust_gamma方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。