本文整理汇总了Python中torchvision.transforms.TenCrop方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.TenCrop方法的具体用法?Python transforms.TenCrop怎么用?Python transforms.TenCrop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms
的用法示例。
在下文中一共展示了transforms.TenCrop方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: scale_crop
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def scale_crop(input_size, scale_size=None, num_crops=1, normalize=_IMAGENET_STATS):
assert num_crops in [1, 5, 10], "num crops must be in {1,5,10}"
convert_tensor = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(**normalize)])
if num_crops == 1:
t_list = [
transforms.CenterCrop(input_size),
convert_tensor
]
else:
if num_crops == 5:
t_list = [transforms.FiveCrop(input_size)]
elif num_crops == 10:
t_list = [transforms.TenCrop(input_size)]
# returns a 4D tensor
t_list.append(transforms.Lambda(lambda crops:
torch.stack([convert_tensor(crop) for crop in crops])))
if scale_size != input_size:
t_list = [transforms.Resize(scale_size)] + t_list
return transforms.Compose(t_list)
示例2: create_test_transforms
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def create_test_transforms(config, crop, scale, ten_crops):
normalize = transforms.Normalize(mean=config["mean"], std=config["std"])
val_transforms = []
if scale != -1:
val_transforms.append(transforms.Resize(scale))
if ten_crops:
val_transforms += [
transforms.TenCrop(crop),
transforms.Lambda(lambda crops: [transforms.ToTensor()(crop) for crop in crops]),
transforms.Lambda(lambda crops: [normalize(crop) for crop in crops]),
transforms.Lambda(lambda crops: torch.stack(crops))
]
else:
val_transforms += [
transforms.CenterCrop(crop),
transforms.ToTensor(),
normalize
]
return val_transforms
示例3: ten_crop
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def ten_crop(cfg, **kwargs):
size = kwargs["input_size"] if kwargs["input_size"] != None else cfg.INPUT_SIZE
return transforms.TenCrop(size)
示例4: extract_features_CUHK03
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def extract_features_CUHK03(model, scale_image_size, data, extract_features_folder, logger, batch_size=128, workers=4, is_tencrop=False,normalize=None):
logger.info('Begin extract features')
if normalize == None:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if is_tencrop:
logger.info('==> Using TenCrop')
tencrop = transforms.Compose([
transforms.Resize([int(x*1.125) for x in scale_image_size]),
transforms.TenCrop(scale_image_size)])
else:
tencrop = None
transform = transforms.Compose([
transforms.Resize(scale_image_size),
transforms.ToTensor(),
normalize, ])
train_data_folder = data
logger.info('Begin load train data from '+train_data_folder)
train_dataloader = torch.utils.data.DataLoader(
Datasets.CUHK03EvaluateDataset(folder=train_data_folder, transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
train_features = extract_features(model, train_dataloader, is_tencrop)
if os.path.isdir(extract_features_folder) is False:
os.makedirs(extract_features_folder)
sio.savemat(os.path.join(extract_features_folder, 'train_features.mat'), {'feature_train_new': train_features})
return
示例5: __init__
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def __init__(self, data_path, is_train = True, *args, **kwargs):
super(Market1501, self).__init__(*args, **kwargs)
self.is_train = is_train
self.data_path = data_path
self.imgs = os.listdir(data_path)
self.imgs = [el for el in self.imgs if os.path.splitext(el)[1] == '.jpg']
self.lb_ids = [int(el.split('_')[0]) for el in self.imgs]
self.lb_cams = [int(el.split('_')[1][1]) for el in self.imgs]
self.imgs = [os.path.join(data_path, el) for el in self.imgs]
if is_train:
self.trans = transforms.Compose([
transforms.Resize((288, 144)),
transforms.RandomCrop((256, 128)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.486, 0.459, 0.408), (0.229, 0.224, 0.225)),
RandomErasing(0.5, mean=[0.0, 0.0, 0.0])
])
else:
self.trans_tuple = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.486, 0.459, 0.408), (0.229, 0.224, 0.225))
])
self.Lambda = transforms.Lambda(
lambda crops: [self.trans_tuple(crop) for crop in crops])
self.trans = transforms.Compose([
transforms.Resize((288, 144)),
transforms.TenCrop((256, 128)),
self.Lambda,
])
# useful for sampler
self.lb_img_dict = dict()
self.lb_ids_uniq = set(self.lb_ids)
lb_array = np.array(self.lb_ids)
for lb in self.lb_ids_uniq:
idx = np.where(lb_array == lb)[0]
self.lb_img_dict.update({lb: idx})
示例6: __init__
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def __init__(self, base_dataset, input_sz=None, include_rgb=None):
super(TenCropAndFinish, self).__init__()
self.base_dataset = base_dataset
self.num_tfs = 10
self.input_sz = input_sz
self.include_rgb = include_rgb
self.crops_tf = transforms.TenCrop(self.input_sz)
self.finish_tf = custom_greyscale_to_tensor(self.include_rgb)
示例7: get_transform_for_test
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def get_transform_for_test():
transform_list = []
transform_list.append(transforms.Lambda(lambda img:scale_keep_ar_min_fixed(img, 560)))
transform_list.append(transforms.TenCrop(448))
transform_list.append(transforms.Lambda(lambda crops: torch.stack([transforms.Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5))((transforms.ToTensor())(crop)) for crop in crops])) )
#transform_list.append(transforms.Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5)))
return transforms.Compose(transform_list)
示例8: loaders_imagenet
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def loaders_imagenet(dataset_name, batch_size, cuda,
train_size, augment=True, val_size=50000,
test_batch_size=256, topk=None, noise=False,
multiple_crops=False, data_root=None):
assert dataset_name == 'imagenet'
data_root = data_root if data_root is not None else os.environ['VISION_DATA_SSD']
root = '{}/ILSVRC2012-prepr-split/images'.format(data_root)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
traindir = os.path.join(root, 'train')
valdir = os.path.join(root, 'val')
testdir = os.path.join(root, 'test')
normalize = transforms.Normalize(mean=mean, std=std)
if multiple_crops:
print('Using multiple crops')
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.TenCrop(224),
lambda x: [normalize(transforms.functional.to_tensor(img)) for img in x]])
else:
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
if augment:
transform_train = transforms.Compose([
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
else:
transform_train = transform_test
dataset_train = datasets.ImageFolder(traindir, transform_train)
dataset_val = datasets.ImageFolder(valdir, transform_test)
dataset_test = datasets.ImageFolder(testdir, transform_test)
return create_loaders(dataset_name, dataset_train, dataset_val,
dataset_test, train_size, val_size, batch_size,
test_batch_size, cuda, noise=noise, num_workers=4)
示例9: extract_features_MARS
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def extract_features_MARS(model, scale_image_size, info_folder, data, extract_features_folder, logger, batch_size=128, workers=4, is_tencrop=False):
logger.info('Begin extract features')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if is_tencrop:
logger.info('==> Using TenCrop')
tencrop = transforms.Compose([
transforms.Resize([int(x*1.125) for x in scale_image_size]),
transforms.TenCrop(scale_image_size)])
else:
tencrop = None
transform = transforms.Compose([
transforms.Resize(scale_image_size),
transforms.ToTensor(),
normalize, ])
train_name_path = os.path.join(info_folder, 'train_name.txt')
test_name_path = os.path.join(info_folder, 'test_name.txt')
train_data_folder = os.path.join(data, 'bbox_train')
test_data_folder = os.path.join(data, 'bbox_test')
logger.info('Train data folder: '+train_data_folder)
logger.info('Test data folder: '+test_data_folder)
logger.info('Begin load train data')
train_dataloader = torch.utils.data.DataLoader(
Datasets.MARSEvalDataset(folder=train_data_folder,
image_name_file=train_name_path,
transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
logger.info('Begin load test data')
test_dataloader = torch.utils.data.DataLoader(
Datasets.MARSEvalDataset(folder=test_data_folder,
image_name_file=test_name_path,
transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
train_features = extract_features(model, train_dataloader, is_tencrop)
test_features = extract_features(model, test_dataloader, is_tencrop)
if os.path.isdir(extract_features_folder) is False:
os.makedirs(extract_features_folder)
sio.savemat(os.path.join(extract_features_folder, 'train_features.mat'), {'feature_train_new': train_features})
sio.savemat(os.path.join(extract_features_folder, 'test_features.mat'), {'feature_test_new': test_features})
return
示例10: extract_features_Market1501
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def extract_features_Market1501(model, scale_image_size, data, extract_features_folder, logger, batch_size=128, workers=4, is_tencrop=False, gen_stage_features = False):
logger.info('Begin extract features')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if is_tencrop:
logger.info('==> Using TenCrop')
tencrop = transforms.Compose([
transforms.Resize([int(x*1.125) for x in scale_image_size]),
transforms.TenCrop(scale_image_size)])
else:
tencrop = None
transform = transforms.Compose([
transforms.Resize(scale_image_size),
transforms.ToTensor(),
normalize, ])
train_data_folder = os.path.join(data, 'bounding_box_train')
test_data_folder = os.path.join(data, 'bounding_box_test')
query_data_folder = os.path.join(data, 'query')
logger.info('Begin load train data from '+train_data_folder)
train_dataloader = torch.utils.data.DataLoader(
Datasets.Market1501EvaluateDataset(folder=train_data_folder, transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
logger.info('Begin load test data from '+test_data_folder)
test_dataloader = torch.utils.data.DataLoader(
Datasets.Market1501EvaluateDataset(folder=test_data_folder, transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
logger.info('Begin load query data from '+query_data_folder)
query_dataloader = torch.utils.data.DataLoader(
Datasets.Market1501EvaluateDataset(folder=query_data_folder, transform=transform, tencrop=tencrop),
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
if not gen_stage_features:
train_features = extract_features(model, train_dataloader, is_tencrop)
test_features = extract_features(model, test_dataloader, is_tencrop)
query_features = extract_features(model, query_dataloader, is_tencrop)
if os.path.isdir(extract_features_folder) is False:
os.makedirs(extract_features_folder)
sio.savemat(os.path.join(extract_features_folder, 'train_features.mat'), {'feature_train_new': train_features})
sio.savemat(os.path.join(extract_features_folder, 'test_features.mat'), {'feature_test_new': test_features})
sio.savemat(os.path.join(extract_features_folder, 'query_features.mat'), {'feature_query_new': query_features})
else:
# model.gen_stage_features = True
train_features = extract_stage_features(model, train_dataloader, is_tencrop)
test_features = extract_stage_features(model, test_dataloader, is_tencrop)
query_features = extract_stage_features(model, query_dataloader, is_tencrop)
if os.path.isdir(extract_features_folder) is False:
os.makedirs(extract_features_folder)
for i in range(4):
sio.savemat(os.path.join(extract_features_folder, 'train_features_{}.mat'.format(i + 1)), {'feature_train_new': train_features[i]})
sio.savemat(os.path.join(extract_features_folder, 'test_features_{}.mat'.format(i + 1)), {'feature_test_new': test_features[i]})
sio.savemat(os.path.join(extract_features_folder, 'query_features_{}.mat'.format(i + 1)), {'feature_query_new': query_features[i]})
sio.savemat(os.path.join(extract_features_folder, 'train_features_fusion.mat'), {'feature_train_new': train_features[4]})
sio.savemat(os.path.join(extract_features_folder, 'test_features_fusion.mat'), {'feature_test_new': test_features[4]})
sio.savemat(os.path.join(extract_features_folder, 'query_features_fusion.mat'), {'feature_query_new': query_features[4]})
示例11: data_loader_predict
# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import TenCrop [as 别名]
def data_loader_predict(data_dir, input_shape, name):
if name in ["inceptionv4", "inceptionresnetv2", "inception_v3"]:
scale = 360
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
elif name == "bninception":
scale = 256
mean = [104, 117, 128]
std = [1, 1, 1]
elif name == "vggm":
scale = 256
mean = [123.68, 116.779, 103.939]
std = [1, 1, 1]
elif name == "nasnetalarge":
scale = 354
mean = [0.5, 0.5, 0.5]
std = [1, 1, 1]
else:
scale = 256
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
print("[Scale: {} , mean: {}, std: {}]".format(scale, mean, std))
if name == "bninception":
val = transforms.Compose([transforms.Scale(scale),
transforms.TenCrop(input_shape),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda bgr: torch.stack([ToSpaceBGR(True)(bgrformat) for bgrformat in bgr])),
transforms.Lambda(lambda range255: torch.stack([ToRange255(True)(ranges) for ranges in range255])),
transforms.Lambda(lambda normal: torch.stack([transforms.Normalize(mean, std)(normalize) for normalize in normal]))])
else:
val = transforms.Compose([transforms.Scale(scale),
transforms.TenCrop(input_shape),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda normal: torch.stack([transforms.Normalize(mean, std)(normalize) for normalize in normal]))])
image_datasets = datasets.ImageFolder(data_dir, val)
dataloaders = torch.utils.data.DataLoader(image_datasets, batch_size=1,
shuffle=False, num_workers=1)
return dataloaders, image_datasets