当前位置: 首页>>代码示例>>Python>>正文


Python transforms.Resize方法代码示例

本文整理汇总了Python中torchvision.transforms.Resize方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.Resize方法的具体用法?Python transforms.Resize怎么用?Python transforms.Resize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.transforms的用法示例。


在下文中一共展示了transforms.Resize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_data(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
        [transforms.RandomResizedCrop(224),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ]),
        'tar': transforms.Compose(
        [transforms.Resize(224),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:20,代码来源:data_loader.py

示例2: get_screen

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_screen(self, env):
        screen = env.render(mode='rgb_array').transpose((2, 0, 1))  # transpose into torch order (CHW)
        # Strip off the top and bottom of the screen
        screen = screen[:, 160:320]
        view_width = 320
        cart_location = self.get_cart_location(env)
        if cart_location < view_width // 2:
            slice_range = slice(view_width)
        elif cart_location > (self.screen_width - view_width // 2):
            slice_range = slice(-view_width, None)
        else:
            slice_range = slice(cart_location - view_width // 2,
                                cart_location + view_width // 2)
        # Strip off the edges, so that we have a square image centered on a cart
        screen = screen[:, :, slice_range]
        # Convert to float, rescale, convert to torch tensor
        screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
        screen = torch.from_numpy(screen)
        # Resize, and add a batch dimension (BCHW)
        return resize(screen).unsqueeze(0) 
开发者ID:moemen95,项目名称:Pytorch-Project-Template,代码行数:22,代码来源:env_utils.py

示例3: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8):
    transform_dict = {
        'train': transforms.Compose(
            [transforms.Resize(256),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'test': transforms.Compose(
            [transforms.Resize(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}

    data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase])
    if phase == 'train':
        if train_val_split:
            train_size = int(train_ratio * len(data))
            test_size = len(data) - train_size
            data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
            train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True,
                                                    num_workers=4)
            val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False,
                                                num_workers=4)
            return [train_loader, val_loader]
        else:
            train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True,
                                                    num_workers=4)
            return train_loader
    else: 
        test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False,
                                                    num_workers=4)
        return test_loader

## Below are for ImageCLEF datasets 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:40,代码来源:data_load.py

示例4: load_imageclef_train

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_imageclef_train(root_path, domain, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.Resize((256, 256)),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize((224, 224)),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])
    train_size = int(0.8 * len(data))
    test_size = len(data) - train_size
    data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
    train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False,
                                               num_workers=4)
    val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False,
                                             num_workers=4)
    return train_loader, val_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:27,代码来源:data_load.py

示例5: load_imageclef_test

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_imageclef_test(root_path, domain, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.Resize((256,256)),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize((224, 224)),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:21,代码来源:data_load.py

示例6: load_training

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_training(root_path, dir, batch_size, kwargs):

    transform = transforms.Compose(
        [transforms.Resize([256, 256]),
         transforms.RandomCrop(224),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor()])
    data = datasets.ImageFolder(root=root_path + dir, transform=transform)
    train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)
    return train_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:12,代码来源:data_loader.py

示例7: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_data(data_folder, batch_size, train, kwargs):
    transform = {
        'train': transforms.Compose(
            [transforms.Resize([256, 256]),
                transforms.RandomCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])]),
        'test': transforms.Compose(
            [transforms.Resize([224, 224]),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])])
        }
    data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test'])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:20,代码来源:data_loader.py

示例8: load_train

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def load_train(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.RandomResizedCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    train_size = int(0.8 * len(data))
    test_size = len(data) - train_size
    data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
    train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return train_loader, val_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:24,代码来源:data_loader.py

示例9: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params):
        super().__init__(train_mode, loader_params, dataset_params, augmentation_params)

        self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)),
                                                   transforms.Grayscale(num_output_channels=3),
                                                   transforms.ToTensor(),
                                                   transforms.Normalize(mean=self.dataset_params.MEAN,
                                                                        std=self.dataset_params.STD),
                                                   ])
        self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w),
                                                                    interpolation=0),
                                                  transforms.Lambda(to_array),
                                                  transforms.Lambda(to_tensor),
                                                  ])

        self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train'])
        self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train'])

        if self.dataset_params.target_format == 'png':
            self.dataset = ImageSegmentationPngDataset
        elif self.dataset_params.target_format == 'json':
            self.dataset = ImageSegmentationJsonDataset
        else:
            raise Exception('files must be png or json') 
开发者ID:minerva-ml,项目名称:steppy-toolkit,代码行数:26,代码来源:segmentation.py

示例10: get_transform2

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_transform2(dataset_name, net_transform, downscale):
    "Returns image and label transform to downscale, crop and prepare for net."
    orig_size = get_orig_size(dataset_name)
    transform = []
    target_transform = []
    if downscale is not None:
        transform.append(transforms.Resize(orig_size // downscale))
        target_transform.append(
                transforms.Resize(orig_size // downscale,
                    interpolation=Image.NEAREST))
    transform.extend([transforms.Resize(orig_size), net_transform]) 
    target_transform.extend([transforms.Resize(orig_size, interpolation=Image.NEAREST),
        to_tensor_raw]) 
    transform = transforms.Compose(transform)
    target_transform = transforms.Compose(target_transform)
    return transform, target_transform 
开发者ID:jhoffman,项目名称:cycada_release,代码行数:18,代码来源:data_loader.py

示例11: get_transform

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_transform(params, image_size, num_channels):
    # Transforms for PIL Images: Gray <-> RGB
    Gray2RGB = transforms.Lambda(lambda x: x.convert('RGB'))
    RGB2Gray = transforms.Lambda(lambda x: x.convert('L'))

    transform = []
    # Does size request match original size?
    if not image_size == params.image_size:
        transform.append(transforms.Resize(image_size))
   
    # Does number of channels requested match original?
    if not num_channels == params.num_channels:
        if num_channels == 1:
            transform.append(RGB2Gray)
        elif num_channels == 3:
            transform.append(Gray2RGB)
        else:
            print('NumChannels should be 1 or 3', num_channels)
            raise Exception

    transform += [transforms.ToTensor(), 
            transforms.Normalize((params.mean,), (params.std,))]

    return transforms.Compose(transform) 
开发者ID:jhoffman,项目名称:cycada_release,代码行数:26,代码来源:data_loader.py

示例12: get_mnist_dataloaders

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_mnist_dataloaders(batch_size=128):
    """MNIST dataloader with (32, 32) sized images."""
    # Resize images so they are a power of 2
    all_transforms = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor()
    ])
    # Get train and test data
    train_data = datasets.MNIST('../data', train=True, download=True,
                                transform=all_transforms)
    test_data = datasets.MNIST('../data', train=False,
                               transform=all_transforms)
    # Create dataloaders
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
    return train_loader, test_loader 
开发者ID:vandit15,项目名称:Self-Supervised-Gans-Pytorch,代码行数:18,代码来源:dataloaders.py

示例13: get_fashion_mnist_dataloaders

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_fashion_mnist_dataloaders(batch_size=128):
    """Fashion MNIST dataloader with (32, 32) sized images."""
    # Resize images so they are a power of 2
    all_transforms = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor()
    ])
    # Get train and test data
    train_data = datasets.FashionMNIST('../fashion_data', train=True, download=True,
                                       transform=all_transforms)
    test_data = datasets.FashionMNIST('../fashion_data', train=False,
                                      transform=all_transforms)
    # Create dataloaders
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
    return train_loader, test_loader 
开发者ID:vandit15,项目名称:Self-Supervised-Gans-Pytorch,代码行数:18,代码来源:dataloaders.py

示例14: get_lsun_dataloader

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def get_lsun_dataloader(path_to_data='../lsun', dataset='bedroom_train',
                        batch_size=64):
    """LSUN dataloader with (128, 128) sized images.
    path_to_data : str
        One of 'bedroom_val' or 'bedroom_train'
    """
    # Compose transforms
    transform = transforms.Compose([
        transforms.Resize(128),
        transforms.CenterCrop(128),
        transforms.ToTensor()
    ])

    # Get dataset
    lsun_dset = datasets.LSUN(db_path=path_to_data, classes=[dataset],
                              transform=transform)

    # Create dataloader
    return DataLoader(lsun_dset, batch_size=batch_size, shuffle=True) 
开发者ID:vandit15,项目名称:Self-Supervised-Gans-Pytorch,代码行数:21,代码来源:dataloaders.py

示例15: save_distorted

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Resize [as 别名]
def save_distorted(method=gaussian_noise):
    for severity in range(1, 6):
        print(method.__name__, severity)
        distorted_dataset = DistortImageFolder(
            root="/share/data/vision-greg/ImageNet/clsloc/images/val",
            method=method, severity=severity,
            transform=trn.Compose([trn.Resize(256), trn.CenterCrop(224)]))
        distorted_dataset_loader = torch.utils.data.DataLoader(
            distorted_dataset, batch_size=100, shuffle=False, num_workers=4)

        for _ in distorted_dataset_loader: continue


# /////////////// End Further Setup ///////////////


# /////////////// Display Results /////////////// 
开发者ID:hendrycks,项目名称:robustness,代码行数:19,代码来源:make_imagenet_c.py


注:本文中的torchvision.transforms.Resize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。