当前位置: 首页>>代码示例>>Python>>正文


Python transforms.Normalize方法代码示例

本文整理汇总了Python中torchvision.transforms.Normalize方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.Normalize方法的具体用法?Python transforms.Normalize怎么用?Python transforms.Normalize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.transforms的用法示例。


在下文中一共展示了transforms.Normalize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_data(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
        [transforms.RandomResizedCrop(224),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ]),
        'tar': transforms.Compose(
        [transforms.Resize(224),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:20,代码来源:data_loader.py

示例2: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def __init__(self, config):
        self.config = config

        if config.data_mode == "imgs":
            transform = v_transforms.Compose(
                [v_transforms.ToTensor(),
                 v_transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])

            dataset = v_datasets.ImageFolder(self.config.data_folder, transform=transform)

            self.dataset_len = len(dataset)

            self.num_iterations = (self.dataset_len + config.batch_size - 1) // config.batch_size

            self.loader = DataLoader(dataset,
                                     batch_size=config.batch_size,
                                     shuffle=True,
                                     num_workers=config.data_loader_workers,
                                     pin_memory=config.pin_memory)
        elif config.data_mode == "numpy":
            raise NotImplementedError("This mode is not implemented YET")
        else:
            raise Exception("Please specify in the json a specified mode in data_mode") 
开发者ID:moemen95,项目名称:Pytorch-Project-Template,代码行数:25,代码来源:celebA.py

示例3: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def __init__(self, args, train=True):
        self.root_dir = args.data

        if train:
            self.data_set_list = train_set_list
        elif args.use_test_for_val:
            self.data_set_list = test_set_list
        else:
            self.data_set_list = val_set_list

        self.data_set_list = ['%06d.png' % (x) for x in self.data_set_list]
        self.args = args
        self.read_features = args.read_features

        self.features_dir = args.features_dir
        self.transform = transforms.Compose([
            transforms.Scale((args.image_size, args.image_size)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225]),
        ])
        self.transform_segmentation = transforms.Compose([
            transforms.Scale((args.segmentation_size, args.segmentation_size)),
            transforms.ToTensor(),
        ]) 
开发者ID:ehsanik,项目名称:dogTorch,代码行数:27,代码来源:nyu_walkable_surface_dataset.py

示例4: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8):
    transform_dict = {
        'train': transforms.Compose(
            [transforms.Resize(256),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'test': transforms.Compose(
            [transforms.Resize(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}

    data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase])
    if phase == 'train':
        if train_val_split:
            train_size = int(train_ratio * len(data))
            test_size = len(data) - train_size
            data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
            train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True,
                                                    num_workers=4)
            val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False,
                                                num_workers=4)
            return [train_loader, val_loader]
        else:
            train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True,
                                                    num_workers=4)
            return train_loader
    else: 
        test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False,
                                                    num_workers=4)
        return test_loader

## Below are for ImageCLEF datasets 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:40,代码来源:data_load.py

示例5: load_imageclef_train

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_imageclef_train(root_path, domain, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.Resize((256, 256)),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize((224, 224)),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])
    train_size = int(0.8 * len(data))
    test_size = len(data) - train_size
    data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
    train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False,
                                               num_workers=4)
    val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False,
                                             num_workers=4)
    return train_loader, val_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:27,代码来源:data_load.py

示例6: load_imageclef_test

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_imageclef_test(root_path, domain, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.Resize((256,256)),
             transforms.RandomCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize((224, 224)),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:21,代码来源:data_load.py

示例7: load_data

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_data(data_folder, batch_size, train, kwargs):
    transform = {
        'train': transforms.Compose(
            [transforms.Resize([256, 256]),
                transforms.RandomCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])]),
        'test': transforms.Compose(
            [transforms.Resize([224, 224]),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])])
        }
    data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test'])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False)
    return data_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:20,代码来源:data_loader.py

示例8: load_train

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def load_train(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.RandomResizedCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    train_size = int(0.8 * len(data))
    test_size = len(data) - train_size
    data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
    train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return train_loader, val_loader 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:24,代码来源:data_loader.py

示例9: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params):
        super().__init__(train_mode, loader_params, dataset_params, augmentation_params)

        self.image_transform = transforms.Compose([transforms.Grayscale(num_output_channels=3),
                                                   transforms.ToTensor(),
                                                   transforms.Normalize(mean=self.dataset_params.MEAN,
                                                                        std=self.dataset_params.STD),
                                                   ])
        self.mask_transform = transforms.Compose([transforms.Lambda(to_array),
                                                  transforms.Lambda(to_tensor),
                                                  ])

        self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train'])
        self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train'])
        self.image_augment_inference = ImgAug(self.augmentation_params['image_augment_inference'])
        self.image_augment_with_target_inference = ImgAug(
            self.augmentation_params['image_augment_with_target_inference'])

        if self.dataset_params.target_format == 'png':
            self.dataset = ImageSegmentationPngDataset
        elif self.dataset_params.target_format == 'json':
            self.dataset = ImageSegmentationJsonDataset
        else:
            raise Exception('files must be png or json') 
开发者ID:minerva-ml,项目名称:steppy-toolkit,代码行数:26,代码来源:segmentation.py

示例10: main

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def main():
    best_acc = 0

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    print('==> Preparing data..')
    transforms_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

    dataset_train = CIFAR10(root='../data', train=True, download=True, 
                            transform=transforms_train)

    train_loader = DataLoader(dataset_train, batch_size=args.batch_size, 
                              shuffle=True, num_workers=args.num_worker)

    # there are 10 classes so the dataset name is cifar-10
    classes = ('plane', 'car', 'bird', 'cat', 'deer', 
               'dog', 'frog', 'horse', 'ship', 'truck')

    print('==> Making model..')

    net = pyramidnet()
    net = nn.DataParallel(net)
    net = net.to(device)
    num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
    print('The number of parameters of model is', num_params)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    # optimizer = optim.SGD(net.parameters(), lr=args.lr, 
    #                       momentum=0.9, weight_decay=1e-4)
    
    train(net, criterion, optimizer, train_loader, device) 
开发者ID:dnddnjs,项目名称:pytorch-multigpu,代码行数:38,代码来源:train.py

示例11: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def __init__(self):
        self.batch_size = 64
        self.test_batch_size = 100
        self.learning_rate = 0.01
        self.sgd_momentum = 0.9
        self.log_interval = 100
        # Fetch MNIST data set.
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
                ])),
            batch_size=self.batch_size,
            shuffle=True)
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
                ])),
            batch_size=self.test_batch_size,
            shuffle=True)
        self.network = Net()

    # Train the network for several epochs, validating after each epoch. 
开发者ID:aimuch,项目名称:iAI,代码行数:26,代码来源:model.py

示例12: __init__

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def __init__(self):
        self.batch_size = 64
        self.test_batch_size = 100
        self.learning_rate = 0.0025
        self.sgd_momentum = 0.9
        self.log_interval = 100
        # Fetch MNIST data set.
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
                ])),
            batch_size=self.batch_size,
            shuffle=True)
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
                ])),
            batch_size=self.test_batch_size,
            shuffle=True)
        self.network = Net()

    # Train the network for one or more epochs, validating after each epoch. 
开发者ID:aimuch,项目名称:iAI,代码行数:26,代码来源:model.py

示例13: loaders_mnist

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def loaders_mnist(dataset, batch_size=64, cuda=0,
                  train_size=50000, val_size=10000, test_size=10000,
                  test_batch_size=1000, **kwargs):

    assert dataset == 'mnist'
    root = '{}/{}'.format(os.environ['VISION_DATA'], dataset)

    # Data loading code
    normalize = transforms.Normalize(mean=(0.1307,),
                                     std=(0.3081,))

    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # define two datasets in order to have different transforms
    # on training and validation
    dataset_train = datasets.MNIST(root=root, train=True, transform=transform)
    dataset_val = datasets.MNIST(root=root, train=True, transform=transform)
    dataset_test = datasets.MNIST(root=root, train=False, transform=transform)

    return create_loaders(dataset_train, dataset_val,
                          dataset_test, train_size, val_size, test_size,
                          batch_size=batch_size,
                          test_batch_size=test_batch_size,
                          cuda=cuda, num_workers=0) 
开发者ID:oval-group,项目名称:dfw,代码行数:26,代码来源:loaders.py

示例14: segment

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def segment(self, image):
        # don't track tensors with autograd during prediction
        with torch.no_grad():
            mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]

            transform = Compose([ConvertImageMode(mode="RGB"), ImageToTensor(), Normalize(mean=mean, std=std)])
            image = transform(image)

            batch = image.unsqueeze(0).to(self.device)

            output = self.net(batch)

            output = output.cpu().data.numpy()
            output = output.squeeze(0)

            mask = output.argmax(axis=0).astype(np.uint8)

            mask = Image.fromarray(mask, mode="P")

            palette = make_palette(*self.dataset["common"]["colors"])
            mask.putpalette(palette)

            return mask 
开发者ID:mapbox,项目名称:robosat,代码行数:25,代码来源:serve.py

示例15: get_usps

# 需要导入模块: from torchvision import transforms [as 别名]
# 或者: from torchvision.transforms import Normalize [as 别名]
def get_usps(train, get_dataset=False, batch_size=cfg.batch_size):
    """Get USPS dataset loader."""
    # image pre-processing
    pre_process = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=cfg.dataset_mean,
                                          std=cfg.dataset_std)])

    # dataset and data loader
    usps_dataset = USPS(root=cfg.data_root,
                        train=train,
                        transform=pre_process,
                        download=True)

    if get_dataset:
        return usps_dataset
    else:
        usps_data_loader = torch.utils.data.DataLoader(
            dataset=usps_dataset,
            batch_size=batch_size,
            shuffle=True)
        return usps_data_loader 
开发者ID:corenel,项目名称:pytorch-atda,代码行数:24,代码来源:usps.py


注:本文中的torchvision.transforms.Normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。