当前位置: 首页>>代码示例>>Python>>正文


Python models.vgg19方法代码示例

本文整理汇总了Python中torchvision.models.vgg19方法的典型用法代码示例。如果您正苦于以下问题:Python models.vgg19方法的具体用法?Python models.vgg19怎么用?Python models.vgg19使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.models的用法示例。


在下文中一共展示了models.vgg19方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
开发者ID:shionhonda,项目名称:viton-gan,代码行数:23,代码来源:networks.py

示例2: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def __init__(self, vgg_path, layers='45', input='RGB', loss='l1'):
        super(VGGLoss, self).__init__()
        self.input = input
        vgg = models.vgg19(pretrained=False)
        if vgg_path is not '':
            vgg.load_state_dict(torch.load(vgg_path))
            # vgg.load_state_dict(torch.load('../../../'+vgg_path))
        self.layers = [int(l) for l in layers]
        layers_dict = [0, 4, 9, 18, 27, 36]
        self.vgg = []
        if loss == 'l1':
            self.loss_func = l1_loss
            # pytorch 0.4 l1_loss malfunction
        elif loss == 'l2':
            self.loss_func = nn.functional.mse_loss
        else:
            raise Exception('Do not support this loss.')

        i = 0
        for j in self.layers:
            self.vgg.append(nn.Sequential(*list(vgg.features.children())[layers_dict[i]:layers_dict[j]]))
            i = j 
开发者ID:guochengqian,项目名称:TENet,代码行数:24,代码来源:loss.py

示例3: get_image_format

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def get_image_format(framework_name, model_name):
    """Return the correct input range and shape for target framework and model"""
    special_shape = {'pytorch':{'inception_v3': (299, 299)},
                     'keras': {'xception': (299, 299),
                               'inception_v3':(299, 299),
                               'yolo_v3': (416, 416),
                               'ssd300': (300, 300)}}
    special_bound = {'keras':{'vgg16':(0, 255),
                              'vgg19':(0, 255),
                              'resnet50':(0, 255),
                              'ssd300': (0, 255)},
                     'cloud': {'aip_antiporn': (0, 255),
                               'google_safesearch': (0, 255),
                               'google_objectdetection': (0, 255)}}
    default_shape = (224, 224)
    default_bound = (0, 1)
    if special_shape.get(framework_name, None):
        if special_shape[framework_name].get(model_name, None):
            default_shape = special_shape[framework_name][model_name]
    if special_bound.get(framework_name, None):
        if special_bound[framework_name].get(model_name, None):
            default_bound = special_bound[framework_name][model_name]
    return {'shape': default_shape, 'bounds': default_bound} 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:25,代码来源:tools.py

示例4: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def __init__(self, image_size=128, c_dim = 5, net_type='vgg19', max_filters=None, global_pool='mean',use_bias=False, class_ftune = 0):
        super(DiscriminatorGAP_ImageNet, self).__init__()

        layers = []
        nFilt = 512 if max_filters is None else max_filters
        self.pnet = Vgg19(only_last=True) if net_type == 'vgg19' else None
        if class_ftune > 0.:
            pAll = list(self.pnet.named_parameters())
            # Multiply by two for weight and bias
            for pn in pAll[::-1][:2*class_ftune]:
                pn[1].requires_grad = True
        layers.append(nn.LeakyReLU(0.1, inplace=True))
        layers.append(nn.Conv2d(512, nFilt, kernel_size=3, stride=1, padding=1))
        layers.append(nn.BatchNorm2d(nFilt))
        layers.append(nn.LeakyReLU(0.1, inplace=True))
        layers.append(nn.Conv2d(nFilt, nFilt, kernel_size=3, stride=1, padding=1))
        layers.append(nn.BatchNorm2d(nFilt))
        layers.append(nn.LeakyReLU(0.1, inplace=True))
        self.layers = nn.Sequential(*layers)
        self.globalPool = nn.AdaptiveAvgPool2d(1) if global_pool == 'mean' else nn.AdaptiveMaxPool2d(1)
        self.classifyFC = nn.Linear(nFilt, c_dim, bias=use_bias)
        self.shift = torch.autograd.Variable(torch.Tensor([-.030, -.088, -.188]).view(1,3,1,1), requires_grad=False).cuda()
        self.scale = torch.autograd.Variable(torch.Tensor([.458, .448, .450]).view(1,3,1,1), requires_grad=False).cuda()
        self.c_dim  = c_dim 
开发者ID:rakshithShetty,项目名称:adversarial-object-removal,代码行数:26,代码来源:models.py

示例5: forward

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def forward(self, x):
        out = {}
        x = x - self.mean
        ci = 1
        ri = 0
        for layer in self.vgg19.children():
            if isinstance(layer, nn.Conv2d):
                ri += 1
                name = 'conv{}_{}'.format(ci, ri)
            elif isinstance(layer, nn.ReLU):
                ri += 1
                name = 'relu{}_{}'.format(ci, ri)
                layer = nn.ReLU(inplace=False)
            elif isinstance(layer, nn.MaxPool2d):
                ri = 0
                name = 'pool_{}'.format(ci)
                ci += 1
            elif isinstance(layer, nn.BatchNorm2d):
                name = 'bn_{}'.format(ci)
            else:
                raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
            x = layer(x)
            out[name] = x
        # print([x for x in out])
        return out 
开发者ID:shepnerd,项目名称:inpainting_gmcnn,代码行数:27,代码来源:layer.py

示例6: main

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def main():
  # model = models.vgg19_bn(pretrained=True)
  # _, summary = weight_watcher.analyze(model, alphas=False)
  # for key, value in summary.items():
  #   print('{:10s} : {:}'.format(key, value))

  _, summary = weight_watcher.analyze(models.vgg13(pretrained=True), alphas=False)
  print('vgg-13 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg13_bn(pretrained=True), alphas=False)
  print('vgg-13-BN : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg16(pretrained=True), alphas=False)
  print('vgg-16 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg16_bn(pretrained=True), alphas=False)
  print('vgg-16-BN : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg19(pretrained=True), alphas=False)
  print('vgg-19 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg19_bn(pretrained=True), alphas=False)
  print('vgg-19-BN : {:}'.format(summary['lognorm'])) 
开发者ID:D-X-Y,项目名称:AutoDL-Projects,代码行数:20,代码来源:test-ww.py

示例7: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def __init__(self, conv_index, rgb_range=1):
        super(VGG, self).__init__()
        vgg_features = models.vgg19(pretrained=True).features
        modules = [m for m in vgg_features]
        if conv_index == '22':
            self.vgg = nn.Sequential(*modules[:8])
        elif conv_index == '54':
            self.vgg = nn.Sequential(*modules[:35])

        vgg_mean = (0.485, 0.456, 0.406)
        vgg_std = (0.229 * rgb_range, 0.224 * rgb_range, 0.225 * rgb_range)
        self.sub_mean = common.MeanShift(rgb_range, vgg_mean, vgg_std)
        self.vgg.requires_grad = False 
开发者ID:HolmesShuan,项目名称:OISR-PyTorch,代码行数:15,代码来源:vgg.py

示例8: vgg19

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def vgg19(num_classes=1000, pretrained='imagenet'):
    """VGG 19-layer model (configuration "E")
    """
    model = models.vgg19(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg19'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_vggs(model)
    return model 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:11,代码来源:torchvision_models.py

示例9: get_vgg19

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def get_vgg19(model_name, model_path):
    
    # load base model
    if model_name == 'vgg19_caffe':
        model = vgg19()
    elif model_name == 'vgg19_pytorch':
        model = vgg19(pretrained=True)
    elif model_name == 'vgg19_pytorch_modified':
        model = VGGModified(vgg19(), 0.2)
        model.load_state_dict(torch.load('%s/%s.pkl' % (model_path, model_name))['state_dict'])
    
    # convert model into standard form
    model.classifier = nn.Sequential(utils.View(), *model.classifier._modules.values())
    vgg = model.features
    vgg_classifier = model.classifier
    names = ['conv1_1','relu1_1','conv1_2','relu1_2','pool1',
             'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
             'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
             'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
             'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5',
             'torch_view','fc6','relu6','drop6','fc7','relu7','drop7','fc8']
    model = nn.Sequential()
    for n, m in zip(names, list(vgg) + list(vgg_classifier)):
        model.add_module(n, m)
    if model_name == 'vgg19_caffe':
        model.load_state_dict(torch.load('%s/%s.pth' % (model_path, model_name)))

    return model 
开发者ID:egorzakharov,项目名称:PerceptualGAN,代码行数:30,代码来源:vgg_utils.py

示例10: _load_keras_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def _load_keras_model(model_name, summary):
    import keras.applications as models
    switcher = {
        'xception': lambda: models.xception.Xception(weights='imagenet'),
        'vgg16': lambda: models.vgg16.VGG16(weights='imagenet'),
        'vgg19': lambda: models.vgg19.VGG19(weights='imagenet'),
        "resnet50": lambda: models.resnet50.ResNet50(weights='imagenet'),
        "inception_v3": lambda: models.inception_v3.InceptionV3(weights='imagenet'),
        "yolo_v3": lambda: _load_yolov3_model(),
        "ssd300": lambda: _load_ssd300_model(),
        "retina_resnet_50": lambda: _load_retinanet_resnet50_model()
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()

    from perceptron.models.classification.keras import KerasModel as ClsKerasModel
    from perceptron.models.detection.keras_ssd300 import KerasSSD300Model
    from perceptron.models.detection.keras_yolov3 import KerasYOLOv3Model
    from perceptron.models.detection.keras_retina_resnet50 import KerasResNet50RetinaNetModel
    import numpy as np
    format = get_image_format('keras', model_name)
    if format['bounds'][1] == 1:
        mean = np.array([0.485, 0.456, 0.406]).reshape((1, 1, 3))
        std = np.array([0.229, 0.224, 0.225]).reshape((1, 1, 3))
        preprocessing = (mean, std)
    else:
        preprocessing = (np.array([104, 116, 123]), 1)
    switcher = {
        'yolo_v3': lambda x: KerasYOLOv3Model(x, bounds=(0, 1)),
        'ssd300': lambda x: KerasSSD300Model(x, bounds=(0, 255)),
        'retina_resnet_50': lambda x: KerasResNet50RetinaNetModel(None, bounds=(0, 255)),
    }
    _wrap_model = switcher.get(
        model_name,
        lambda x: ClsKerasModel(x, bounds=format['bounds'], preprocessing=preprocessing))
    kmodel = _wrap_model(_model)
    return kmodel 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:40,代码来源:tools.py

示例11: _load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:41,代码来源:tools.py

示例12: load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:30,代码来源:tools.py

示例13: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg19 [as 别名]
def __init__(self):
        super(FeatureExtractor, self).__init__()
        vgg19_model = vgg19(pretrained=True)
        self.feature_extractor = nn.Sequential(*list(vgg19_model.features.children())[:18]) 
开发者ID:eriklindernoren,项目名称:PyTorch-GAN,代码行数:6,代码来源:models.py


注:本文中的torchvision.models.vgg19方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。