当前位置: 首页>>代码示例>>Python>>正文


Python models.vgg11_bn方法代码示例

本文整理汇总了Python中torchvision.models.vgg11_bn方法的典型用法代码示例。如果您正苦于以下问题:Python models.vgg11_bn方法的具体用法?Python models.vgg11_bn怎么用?Python models.vgg11_bn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.models的用法示例。


在下文中一共展示了models.vgg11_bn方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11_bn [as 别名]
def __init__(self, p):
        super(CAL_network, self).__init__()
        self.params = p

        # get feature extractor and first FCN layer from vgg
        vgg = models.vgg11_bn(pretrained=True)
        ls = [l for l in vgg.features]+ [nn.AdaptiveMaxPool2d(1), Flatten()]
        self.features = nn.Sequential(*ls)
        n_in = 512 # fixed amount of features after feature extractor

        # initialize the task blocks
        self.red_light = TaskBlock(params=p, n_in=512, n_out=2)
        self.hazard_stop = TaskBlock(params=p, n_in=512, n_out=2)
        self.speed_sign = TaskBlock(params=p, n_in=512,  n_out=4)
        self.veh_distance = TaskBlock(params=p, n_in=512, n_out=1)
        self.relative_angle = TaskBlock(params=p, n_in=512, n_out=1, cond=True)
        self.center_distance = TaskBlock(params=p, n_in=512, n_out=1, cond=True) 
开发者ID:xl-sr,项目名称:CAL,代码行数:19,代码来源:net.py

示例2: vgg11_bn

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11_bn [as 别名]
def vgg11_bn(num_classes=1000, pretrained='imagenet'):
    """VGG 11-layer model (configuration "A") with batch normalization
    """
    model = models.vgg11_bn(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg11_bn'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_vggs(model)
    return model 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:11,代码来源:torchvision_models.py

示例3: _load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11_bn [as 别名]
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:41,代码来源:tools.py

示例4: load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11_bn [as 别名]
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:30,代码来源:tools.py

示例5: vgg11_bn

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11_bn [as 别名]
def vgg11_bn(num_classes=1000, pretrained='imagenet'):
    """VGG 11-layer model (configuration "A") with batch normalization
    """
    model = models.vgg11_bn(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['vgg11_bn'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    return model 
开发者ID:CeLuigi,项目名称:models-comparison.pytorch,代码行数:10,代码来源:torchvision_models.py


注:本文中的torchvision.models.vgg11_bn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。