本文整理汇总了Python中torchvision.models.vgg11方法的典型用法代码示例。如果您正苦于以下问题:Python models.vgg11方法的具体用法?Python models.vgg11怎么用?Python models.vgg11使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models
的用法示例。
在下文中一共展示了models.vgg11方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def __init__(self, num_classes=1, num_filters=32):
super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.encoder = models.vgg11(pretrained=True).features
self.relu = self.encoder[1]
self.conv1 = self.encoder[0]
self.conv2 = self.encoder[3]
self.conv3s = self.encoder[6]
self.conv3 = self.encoder[8]
self.conv4s = self.encoder[11]
self.conv4 = self.encoder[13]
self.conv5s = self.encoder[16]
self.conv5 = self.encoder[18]
self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)
self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
示例2: vgg11
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def vgg11(num_classes=1000, pretrained='imagenet'):
"""VGG 11-layer model (configuration "A")
"""
model = models.vgg11(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg11'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
示例3: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def __init__(self, num_filters=32, pretrained=False):
"""
:param num_classes:
:param num_filters:
:param pretrained:
False - no pre-trained network is used
True - encoder is pre-trained with VGG11
"""
super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.encoder = models.vgg11(pretrained=pretrained).features
self.relu = self.encoder[1]
self.conv1 = self.encoder[0]
self.conv2 = self.encoder[3]
self.conv3s = self.encoder[6]
self.conv3 = self.encoder[8]
self.conv4s = self.encoder[11]
self.conv4 = self.encoder[13]
self.conv5s = self.encoder[16]
self.conv5 = self.encoder[18]
self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)
self.final = nn.Conv2d(num_filters, 1, kernel_size=1)
示例4: _load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def _load_pytorch_model(model_name, summary):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
import torch
if torch.cuda.is_available():
_model = _model.cuda()
from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
import numpy as np
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
pmodel = ClsPyTorchModel(
_model, bounds=(
0, 1), num_classes=1000, preprocessing=(
mean, std))
return pmodel
示例5: load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def load_pytorch_model(model_name):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
return _model
示例6: _init_modules
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def _init_modules(self):
vgg = models.vgg11()
if self.pretrained:
print("Loading pretrained weights from %s" % (self.model_path))
state_dict = torch.load(self.model_path)
vgg.load_state_dict({k: v for k, v in state_dict.items() if k in vgg.state_dict()})
vgg.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1])
# not using the last maxpool layer
self.RCNN_base = nn.Sequential(*list(vgg.features._modules.values())[:-1])
# Fix the layers before conv3:
for layer in range(7):
for p in self.RCNN_base[layer].parameters(): p.requires_grad = False
# self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model)
self.RCNN_top = vgg.classifier
# not using the last maxpool layer
self.RCNN_cls_score = nn.Linear(4096, self.n_classes)
self.stu_feature_adap = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU())
if self.class_agnostic:
self.RCNN_bbox_pred = nn.Linear(4096, 4)
else:
self.RCNN_bbox_pred = nn.Linear(4096, 4 * self.n_classes)
示例7: getNetwork
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def getNetwork(args):
if (args.net_type == 'alexnet'):
net = models.alexnet(pretrained=args.finetune)
file_name = 'alexnet'
elif (args.net_type == 'vggnet'):
if(args.depth == 11):
net = models.vgg11(pretrained=args.finetune)
elif(args.depth == 13):
net = models.vgg13(pretrained=args.finetune)
elif(args.depth == 16):
net = models.vgg16(pretrained=args.finetune)
elif(args.depth == 19):
net = models.vgg19(pretrained=args.finetune)
else:
print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
sys.exit(1)
file_name = 'vgg-%s' %(args.depth)
elif (args.net_type == 'squeezenet'):
net = models.squeezenet1_0(pretrained=args.finetune)
file_name = 'squeeze'
elif (args.net_type == 'resnet'):
net = resnet(args.finetune, args.depth)
file_name = 'resnet-%s' %(args.depth)
elif (args.net_type == 'inception'):
net = pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet')
file_name = 'inception-v3'
elif (args.net_type == 'xception'):
net = pretrainedmodels.xception(num_classes=1000, pretrained='imagenet')
file_name = 'xception'
else:
print('Error : Network should be either [alexnet / squeezenet / vggnet / resnet]')
sys.exit(1)
return net, file_name
示例8: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def __init__(self, num_classes=1, num_filters=32, pretrained=False):
"""
:param num_classes:
:param num_filters:
:param pretrained:
False - no pre-trained network is used
True - encoder is pre-trained with VGG11
"""
super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.encoder = models.vgg11(pretrained=pretrained).features
self.relu = self.encoder[1]
self.conv1 = self.encoder[0]
self.conv2 = self.encoder[3]
self.conv3s = self.encoder[6]
self.conv3 = self.encoder[8]
self.conv4s = self.encoder[11]
self.conv4 = self.encoder[13]
self.conv5s = self.encoder[16]
self.conv5 = self.encoder[18]
self.center = DecoderBlock(num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8)
self.dec5 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8)
self.dec4 = DecoderBlock(num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4)
self.dec3 = DecoderBlock(num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2)
self.dec2 = DecoderBlock(num_filters * (4 + 2), num_filters * 2 * 2, num_filters)
self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)
self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
示例9: vgg11
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def vgg11(num_classes=1000, pretrained='imagenet'):
"""VGG 11-layer model (configuration "A")
"""
model = models.vgg11(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg11'][pretrained]
model = load_pretrained(model, num_classes, settings)
return model
示例10: getNetwork
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def getNetwork(args):
if (args.net_type == 'alexnet'):
net = models.alexnet(pretrained=args.finetune)
file_name = 'alexnet'
elif (args.net_type == 'vggnet'):
if(args.depth == 11):
net = models.vgg11(pretrained=args.finetune)
elif(args.depth == 13):
net = models.vgg13(pretrained=args.finetune)
elif(args.depth == 16):
net = models.vgg16(pretrained=args.finetune)
elif(args.depth == 19):
net = models.vgg19(pretrained=args.finetune)
else:
print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
sys.exit(1)
file_name = 'vgg-%s' %(args.depth)
elif (args.net_type == 'resnet'):
net = resnet(args.finetune, args.depth)
file_name = 'resnet-%s' %(args.depth)
else:
print('Error : Network should be either [alexnet / vggnet / resnet / densenet]')
sys.exit(1)
return net, file_name
示例11: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def __init__(self, num_filters: int = 32, pretrained: bool = False) -> None:
"""
Args:
num_filters:
pretrained:
False - no pre-trained network is used
True - encoder is pre-trained with VGG11
"""
super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.encoder = models.vgg11(pretrained=pretrained).features
self.relu = self.encoder[1]
self.conv1 = self.encoder[0]
self.conv2 = self.encoder[3]
self.conv3s = self.encoder[6]
self.conv3 = self.encoder[8]
self.conv4s = self.encoder[11]
self.conv4 = self.encoder[13]
self.conv5s = self.encoder[16]
self.conv5 = self.encoder[18]
self.center = DecoderBlock(
num_filters * 8 * 2, num_filters * 8 * 2, num_filters * 8
)
self.dec5 = DecoderBlock(
num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 8
)
self.dec4 = DecoderBlock(
num_filters * (16 + 8), num_filters * 8 * 2, num_filters * 4
)
self.dec3 = DecoderBlock(
num_filters * (8 + 4), num_filters * 4 * 2, num_filters * 2
)
self.dec2 = DecoderBlock(
num_filters * (4 + 2), num_filters * 2 * 2, num_filters
)
self.dec1 = ConvRelu(num_filters * (2 + 1), num_filters)
self.final = nn.Conv2d(num_filters, 1, kernel_size=1)
示例12: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import vgg11 [as 别名]
def __init__(self, num_classes=1, num_filters=32, pretrained=False):
"""
:param num_classes:
:param num_filters:
:param pretrained:
False - no pre-trained network used
vgg - encoder pre-trained with VGG11
"""
super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.num_classes = num_classes
if pretrained == 'vgg':
self.encoder = models.vgg11(pretrained=True).features
else:
self.encoder = models.vgg11(pretrained=False).features
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(self.encoder[0],
self.relu)
self.conv2 = nn.Sequential(self.encoder[3],
self.relu)
self.conv3 = nn.Sequential(
self.encoder[6],
self.relu,
self.encoder[8],
self.relu,
)
self.conv4 = nn.Sequential(
self.encoder[11],
self.relu,
self.encoder[13],
self.relu,
)
self.conv5 = nn.Sequential(
self.encoder[16],
self.relu,
self.encoder[18],
self.relu,
)
self.center = DecoderBlock(256 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True)
self.dec5 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv=True)
self.dec4 = DecoderBlock(512 + num_filters * 8, num_filters * 8 * 2, num_filters * 4, is_deconv=True)
self.dec3 = DecoderBlock(256 + num_filters * 4, num_filters * 4 * 2, num_filters * 2, is_deconv=True)
self.dec2 = DecoderBlock(128 + num_filters * 2, num_filters * 2 * 2, num_filters, is_deconv=True)
self.dec1 = ConvRelu(64 + num_filters, num_filters)
self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)