本文整理汇总了Python中torchvision.models.vgg.vgg16方法的典型用法代码示例。如果您正苦于以下问题:Python vgg.vgg16方法的具体用法?Python vgg.vgg16怎么用?Python vgg.vgg16使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models.vgg
的用法示例。
在下文中一共展示了vgg.vgg16方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_model
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def build_model(self):
self.netG = Generator(n_residual_blocks=self.num_residuals, upsample_factor=self.upscale_factor, base_filter=64, num_channel=1).to(self.device)
self.netD = Discriminator(base_filter=64, num_channel=1).to(self.device)
self.feature_extractor = vgg16(pretrained=True)
self.netG.weight_init(mean=0.0, std=0.2)
self.netD.weight_init(mean=0.0, std=0.2)
self.criterionG = nn.MSELoss()
self.criterionD = nn.BCELoss()
torch.manual_seed(self.seed)
if self.GPU_IN_USE:
torch.cuda.manual_seed(self.seed)
self.feature_extractor.cuda()
cudnn.benchmark = True
self.criterionG.cuda()
self.criterionD.cuda()
self.optimizerG = optim.Adam(self.netG.parameters(), lr=self.lr, betas=(0.9, 0.999))
self.optimizerD = optim.SGD(self.netD.parameters(), lr=self.lr / 100, momentum=0.9, nesterov=True)
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizerG, milestones=[50, 75, 100], gamma=0.5) # lr decay
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizerD, milestones=[50, 75, 100], gamma=0.5) # lr decay
示例2: __init__
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def __init__(self):
super(GeneratorLoss, self).__init__()
vgg = vgg16(pretrained=True)
loss_network = nn.Sequential(*list(vgg.features)[:31]).eval()
for param in loss_network.parameters():
param.requires_grad = False
self.loss_network = loss_network
self.mse_loss = nn.MSELoss()
self.tv_loss = TVLoss()
示例3: vgg16
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def vgg16(*args, **kwargs):
pretrained = False
if 'pretrained' in kwargs:
pretrained = kwargs['pretrained']
kwargs['pretrained'] = False
base_vgg = vgg(*args, **kwargs)
conv_fc6 = nn.Conv2d(in_channels=512,
out_channels=4096,
kernel_size=7,
padding=3)
conv_fc7 = nn.Conv2d(in_channels=4096,
out_channels=4096,
kernel_size=1,
padding=0)
conv_fc8 = nn.Conv2d(in_channels=4096,
out_channels=2688,
kernel_size=1,
padding=0)
fconv_layers = []
for layer in (conv_fc6, conv_fc7, conv_fc8):
fconv_layers += [layer, nn.ReLU(), nn.Dropout(p=0.2)]
base_vgg = list(base_vgg.children())[:-1]
base_vgg += fconv_layers
model = nn.Sequential(*base_vgg)
if pretrained:
state_dict = model.state_dict()
pretrained_state = model_zoo.load_url(VGG16_URL)
for layer_name in pretrained_state:
if layer_name in state_dict:
state_dict[layer_name] = pretrained_state[layer_name]
model.load_state_dict(state_dict)
return model
示例4: __init__
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def __init__(self):
super(PerceptualLossVGG16, self).__init__()
vgg = vgg16(pretrained=True)
loss_network = nn.Sequential(*list(vgg.features)[:31]).eval()
for param in loss_network.parameters():
param.requires_grad = False
self.loss_network = loss_network
self.mse_loss = nn.MSELoss()
示例5: vgg
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def vgg(**config):
dataset = config.pop('dataset', 'imagenet')
depth = config.pop('depth', 16)
bn = config.pop('bn', True)
if dataset == 'imagenet':
config.setdefault('num_classes', 1000)
if depth == 11:
if bn is False:
return vgg11(pretrained=False, **config)
else:
return vgg11_bn(pretrained=False, **config)
if depth == 13:
if bn is False:
return vgg13(pretrained=False, **config)
else:
return vgg13_bn(pretrained=False, **config)
if depth == 16:
if bn is False:
return vgg16(pretrained=False, **config)
else:
return vgg16_bn(pretrained=False, **config)
if depth == 19:
if bn is False:
return vgg19(pretrained=False, **config)
else:
return vgg19_bn(pretrained=False, **config)
elif dataset == 'cifar10':
config.setdefault('num_classes', 10)
elif dataset == 'cifar100':
config.setdefault('num_classes', 100)
config.setdefault('batch_norm', bn)
return VGG(model_name[depth], **config)
示例6: vgg_fc
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def vgg_fc(relu_end=True, linear_end=True):
model = vgg16(pretrained=True)
vfc = model.classifier
del vfc._modules['6'] # Get rid of linear layer
del vfc._modules['5'] # Get rid of linear layer
if not relu_end:
del vfc._modules['4'] # Get rid of linear layer
if not linear_end:
del vfc._modules['3']
return vfc
示例7: load_vgg
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def load_vgg(use_dropout=True, use_relu=True, use_linear=True, pretrained=True):
model = vgg16(pretrained=pretrained)
del model.features._modules['30'] # Get rid of the maxpool
del model.classifier._modules['6'] # Get rid of class layer
if not use_dropout:
del model.classifier._modules['5'] # Get rid of dropout
if not use_relu:
del model.classifier._modules['4'] # Get rid of relu activation
if not use_linear:
del model.classifier._modules['3'] # Get rid of linear layer
return model
示例8: vggnet_pytorch
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def vggnet_pytorch():
return vgg.vgg16()
示例9: load_vgg
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def load_vgg(use_dropout=False, use_relu=True, use_linear=True, pretrained=True):
model = vgg16(pretrained=pretrained)
del model.features._modules['30'] # Get rid of the maxpool
del model.classifier._modules['6'] # Get rid of class layer
if not use_dropout:
del model.classifier._modules['5'] # Get rid of dropout
if not use_relu:
del model.classifier._modules['4'] # Get rid of relu activation
if not use_linear:
del model.classifier._modules['3'] # Get rid of linear layer
return model
示例10: test_speedup_vgg16
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def test_speedup_vgg16(self):
prune_model_l1(vgg16())
model = vgg16()
model.train()
ms = ModelSpeedup(model, torch.randn(2, 3, 32, 32), MASK_FILE)
ms.speedup_model()
orig_model = vgg16()
assert model.training
assert model.features[2].out_channels == int(orig_model.features[2].out_channels * SPARSITY)
assert model.classifier[0].in_features == int(orig_model.classifier[0].in_features * SPARSITY)
示例11: test_integration
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def test_integration():
transform_pipeline = Compose([Resize((64, 64)), ToTensor()])
cifar10_train = DummyDataset(transform_pipeline)
cifar10_test = DummyDataset(transform_pipeline)
al_dataset = ActiveLearningDataset(cifar10_train,
pool_specifics={'transform': transform_pipeline})
al_dataset.label_randomly(10)
use_cuda = False
model = vgg.vgg16(pretrained=False,
num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0005)
# We can now use BaaL to create the active learning loop.
model = ModelWrapper(model, criterion)
# We create an ActiveLearningLoop that will automatically label the most uncertain samples.
# In this case, we use the widely used BALD heuristic.
active_loop = ActiveLearningLoop(al_dataset,
model.predict_on_dataset,
heuristic=heuristics.BALD(),
ndata_to_label=10,
batch_size=10,
iterations=10,
use_cuda=use_cuda,
workers=4)
# We're all set!
num_steps = 10
for step in range(num_steps):
old_param = list(map(lambda x: x.clone(), model.model.parameters()))
model.train_on_dataset(al_dataset, optimizer=optimizer, batch_size=10,
epoch=5, use_cuda=use_cuda, workers=2)
model.test_on_dataset(cifar10_test, batch_size=10, use_cuda=use_cuda,
workers=2)
if not active_loop.step():
break
new_param = list(map(lambda x: x.clone(), model.model.parameters()))
assert any([not np.allclose(i.detach(), j.detach())
for i, j in zip(old_param, new_param)])
assert step == 4 # 10 + (4 * 10) = 50, so it stops at iterations 4
示例12: test_calibration_integration
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def test_calibration_integration():
transform_pipeline = Compose([Resize((64, 64)), ToTensor()])
cifar10_train = DummyDataset(transform_pipeline)
cifar10_test = DummyDataset(transform_pipeline)
# we don't create different trainset for calibration since the goal is not
# to calibrate
al_dataset = ActiveLearningDataset(cifar10_train,
pool_specifics={'transform': transform_pipeline})
al_dataset.label_randomly(10)
use_cuda = False
model = vgg.vgg16(pretrained=False,
num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0005)
wrapper = ModelWrapper(model, criterion)
calibrator = DirichletCalibrator(wrapper=wrapper, num_classes=10,
lr=0.001, reg_factor=0.01)
for step in range(2):
wrapper.train_on_dataset(al_dataset, optimizer=optimizer,
batch_size=10, epoch=1,
use_cuda=use_cuda, workers=0)
wrapper.test_on_dataset(cifar10_test, batch_size=10,
use_cuda=use_cuda, workers=0)
before_calib_param = list(map(lambda x: x.clone(), wrapper.model.parameters()))
calibrator.calibrate(al_dataset, cifar10_test,
batch_size=10, epoch=5,
use_cuda=use_cuda, double_fit=False, workers=0)
after_calib_param = list(map(lambda x: x.clone(), model.parameters()))
assert all([np.allclose(i.detach(), j.detach())
for i, j in zip(before_calib_param, after_calib_param)])
assert len(list(wrapper.model.modules())) < len(list(calibrator.calibrated_model.modules()))
示例13: vggnet_keras
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def vggnet_keras():
# Block 1
img_input = Input((3, 224, 224))
x = Conv2D(64, (3, 3), activation='relu',
padding='same', name='features.0')(img_input)
x = Conv2D(64, (3, 3), activation='relu',
padding='same', name='features.2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation='relu',
padding='same', name='features.5')(x)
x = Conv2D(128, (3, 3), activation='relu',
padding='same', name='features.7')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation='relu',
padding='same', name='features.10')(x)
x = Conv2D(256, (3, 3), activation='relu',
padding='same', name='features.12')(x)
x = Conv2D(256, (3, 3), activation='relu',
padding='same', name='features.14')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.17')(x)
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.19')(x)
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.21')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.24')(x)
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.26')(x)
x = Conv2D(512, (3, 3), activation='relu',
padding='same', name='features.28')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='classifier.0')(x)
x = Dropout(0.5)(x)
x = Dense(4096, activation='relu', name='classifier.3')(x)
x = Dropout(0.5)(x)
x = Dense(1000, activation=None, name='classifier.6')(x)
# Create model.
model = Model(img_input, x, name='vgg16')
return model
示例14: __init__
# 需要导入模块: from torchvision.models import vgg [as 别名]
# 或者: from torchvision.models.vgg import vgg16 [as 别名]
def __init__(
self,
layer_name_mapping=None,
normalize=True,
device='gpu',
vgg_model=None,
full=False,
inplace=False,
distance=2,
):
super(VGGLoss, self).__init__()
self.layer_name_mapping = layer_name_mapping
if self.layer_name_mapping is None:
self.layer_name_mapping = {
'0': 'conv1_0',
# '1': 'relu1_0',
'2': "conv1_1",
# '3': 'relu1_1',
'7': "conv2_2",
# '8': "relu2_2",
'14': "conv3_3",
# '15': "relu3_3",
'21': "conv4_3",
# '22': "relu4_3", # <- gradient is strangely huge... turn off for now
}
self.normalize = normalize
self.device = device
self.full = full
if distance == 1:
self.distance = F.l1_loss
else:
self.distance = F.mse_loss
if vgg_model is None:
if inplace:
vgg_model = vgg.vgg16(pretrained=True)
else:
vgg_model = modified_vgg.vgg16(pretrained=True)
vgg_model.to(self.device)
vgg_model.eval()
self.vgg_layers = vgg_model.features
del vgg_model
# normalizatoin
self.mean_t = torch.tensor([0.229, 0.224, 0.225], dtype=torch.float32)
self.std_t = torch.tensor([0.485, 0.456, 0.406], dtype=torch.float32)
self.mean_t = self.mean_t.view(1, 3, 1, 1).to(self.device)
self.std_t = self.std_t.view(1, 3, 1, 1).to(self.device)