当前位置: 首页>>代码示例>>Python>>正文


Python models.resnet50方法代码示例

本文整理汇总了Python中torchvision.models.resnet50方法的典型用法代码示例。如果您正苦于以下问题:Python models.resnet50方法的具体用法?Python models.resnet50怎么用?Python models.resnet50使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.models的用法示例。


在下文中一共展示了models.resnet50方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4):
        super(crop_model_multi_scale_shared, self).__init__()

        if model == 'shufflenetv2':
            self.Feat_ext = shufflenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(812, reddim, kernel_size=1, padding=0)
        elif model == 'mobilenetv2':
            self.Feat_ext = mobilenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(448, reddim, kernel_size=1, padding=0)
        elif model == 'vgg16':
            self.Feat_ext = vgg_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(1536, reddim, kernel_size=1, padding=0)
        elif model == 'resnet50':
            self.Feat_ext = resnet50_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(3584, reddim, kernel_size=1, padding=0)

        self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0)
        self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0)
        self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.FC_layers = fc_layers(reddim*2, alignsize) 
开发者ID:HuiZeng,项目名称:Grid-Anchor-based-Image-Cropping-Pytorch,代码行数:23,代码来源:croppingModel.py

示例2: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self):
        super(ImageEmbedding, self).__init__()
        
        resnet = models.resnet50(pretrained=True)
        modules = list(resnet.children())[:-1]  # we do not use the last fc layer.
        self.visionMLP = nn.Sequential(*modules)

        self.visual_embedding = nn.Sequential(
            nn.Linear(opts.imfeatDim, opts.embDim),
            nn.Tanh(),
        )

        self.semantic_branch = nn.Linear(opts.embDim, opts.numClasses)

        self.fc_visual = nn.Sequential(
            nn.Linear(opts.embDim, opts.embDim),
            nn.BatchNorm1d(opts.embDim),
            nn.Tanh(),
        ) 
开发者ID:hwang1996,项目名称:ACME,代码行数:21,代码来源:models.py

示例3: get_image_format

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def get_image_format(framework_name, model_name):
    """Return the correct input range and shape for target framework and model"""
    special_shape = {'pytorch':{'inception_v3': (299, 299)},
                     'keras': {'xception': (299, 299),
                               'inception_v3':(299, 299),
                               'yolo_v3': (416, 416),
                               'ssd300': (300, 300)}}
    special_bound = {'keras':{'vgg16':(0, 255),
                              'vgg19':(0, 255),
                              'resnet50':(0, 255),
                              'ssd300': (0, 255)},
                     'cloud': {'aip_antiporn': (0, 255),
                               'google_safesearch': (0, 255),
                               'google_objectdetection': (0, 255)}}
    default_shape = (224, 224)
    default_bound = (0, 1)
    if special_shape.get(framework_name, None):
        if special_shape[framework_name].get(model_name, None):
            default_shape = special_shape[framework_name][model_name]
    if special_bound.get(framework_name, None):
        if special_bound[framework_name].get(model_name, None):
            default_bound = special_bound[framework_name][model_name]
    return {'shape': default_shape, 'bounds': default_bound} 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:25,代码来源:tools.py

示例4: test_untargeted_resnet50

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def test_untargeted_resnet50(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.resnet50(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:19,代码来源:test_attack_Gaussian_blur.py

示例5: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self,non_layers=[0,1,1,1],stripes=[16,16,16,16],non_type='normal',temporal=None):
        super(Resnet50_NL,self).__init__()
        original = models.resnet50(pretrained=True).state_dict()
        if non_type == 'normal':
            self.backbone = res.ResNet_Video_nonlocal(last_stride=1,non_layers=non_layers)
        elif non_type == 'stripe':
            self.backbone = res.ResNet_Video_nonlocal_stripe(last_stride = 1, non_layers=non_layers, stripes=stripes)
        elif non_type == 'hr':
            self.backbone = res.ResNet_Video_nonlocal_hr(last_stride = 1, non_layers=non_layers, stripes=stripes)
        elif non_type == 'stripe_hr':
            self.backbone = res.ResNet_Video_nonlocal_stripe_hr(last_stride = 1, non_layers=non_layers, stripes=stripes)
        for key in original:
            if key.find('fc') != -1:
                continue
            self.backbone.state_dict()[key].copy_(original[key])
        del original

        self.temporal = temporal
        if self.temporal == 'Done':
            self.avgpool = nn.AdaptiveAvgPool3d(1) 
开发者ID:jackie840129,项目名称:STE-NVAN,代码行数:22,代码来源:models.py

示例6: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
开发者ID:TRI-ML,项目名称:packnet-sfm,代码行数:23,代码来源:resnet_encoder.py

示例7: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, class_num):
        super(ft_net, self).__init__()
        model_ft = models.resnet50(pretrained=True)
        # avg pooling to global pooling
        model_ft.avgpool = nn.AdaptiveAvgPool2d((1,1))

        num_ftrs = model_ft.fc.in_features
        add_block = []
        num_bottleneck = 512
        add_block += [nn.Linear(num_ftrs, num_bottleneck)]
        add_block += [nn.BatchNorm1d(num_bottleneck)]
        add_block += [nn.LeakyReLU(0.1)]
        add_block += [nn.Dropout(p=0.5)]  #default dropout rate 0.5
        add_block = nn.Sequential(*add_block)
        add_block.apply(weights_init_kaiming)
        model_ft.fc = add_block
        self.model = model_ft

        classifier = []
        classifier += [nn.Linear(num_bottleneck, class_num)]
        classifier = nn.Sequential(*classifier)
        classifier.apply(weights_init_classifier)
        self.classifier = classifier 
开发者ID:Simon4Yan,项目名称:eSPGAN,代码行数:25,代码来源:models.py

示例8: build_resnet_50

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def build_resnet_50(self):
        model = models.resnet50(num_classes=self.num_classes)
        model_with_bottleneck = AdaptResNetBottleneck(model, self.embedding_size, self.num_classes)

        model_with_loss = ResNetCenterLoss(
            model_with_bottleneck,
            self.num_classes,
            self.embedding_size,
            center_loss_weight=.0,
            use_cuda=self.use_cuda
        )

        model_with_loss = model_with_loss.cuda() if self.use_cuda else model_with_loss.cpu()
        model_with_loss.train(False)

        if self.use_cuda:
            checkpoint = torch.load(self.weights_path)
        else:
            checkpoint = torch.load(self.weights_path, map_location=lambda storage, loc: storage)

        model_with_loss.load_state_dict(checkpoint['model_state'])

        return model_with_loss 
开发者ID:Giphy,项目名称:celeb-detection-oss,代码行数:25,代码来源:resnet_model.py

示例9: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, class_num):
        super(ft_net, self).__init__()
        model_ft = models.resnet50(pretrained=True)

        # avg pooling to global pooling
        model_ft.avgpool = nn.AdaptiveAvgPool2d((1,1))

        add_block = []
        num_bottleneck = 2048

        add_block += [nn.BatchNorm1d(num_bottleneck)]

        add_block = nn.Sequential(*add_block)
        add_block.apply(weights_init_kaiming)
        model_ft.fc = add_block
        self.model = model_ft

        self.fc0 = nn.Linear(num_bottleneck, class_num, bias = True)
        init.normal(self.fc0.weight.data, std=0.001)
        if hasattr(self.fc0.bias, 'data'):
            init.constant(self.fc0.bias.data, 0.0) 
开发者ID:SongBaiHust,项目名称:Adversarial_Metric_Attack,代码行数:23,代码来源:model.py

示例10: select

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def select(self, model_name=None):
        """select models to be run"""
        logging.info("Run details")
        logging.info("=" * 71)
        models = [
            self.alexnet,
            self.resnet18,
            self.resnet50,
            self.vgg16,
            self.squeezenet,
        ]
        if model_name:
            self.models = [
                model for model in models for name in model_name if name == model.name
            ]
        logging.info("Selected model(s) :: ")
        for m in self.models:
            logging.info("%s ------------- Batchsize :: %s " % (m.name, m.batch))
        logging.info("=" * 71) 
开发者ID:intel,项目名称:stacks-usecase,代码行数:21,代码来源:cnn_benchmarks.py

示例11: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, model_type='resnet50', layer_type='layer4'):
		super().__init__()
		# get model
		if model_type == 'resnet50':
			original_model = models.resnet50(pretrained=True)
		elif model_type == 'resnet101':
			original_model = models.resnet101(pretrained=True)
		else:
			raise NameError('Unknown model_type passed')
		# get requisite layer
		if layer_type == 'layer2':
			num_layers = 6
			pool_size = 28
		elif layer_type == 'layer3':
			num_layers = 7
			pool_size = 14
		elif layer_type == 'layer4':
			num_layers = 8
			pool_size = 7
		else:
			raise NameError('Uknown layer_type passed')
		self.features = nn.Sequential(*list(original_model.children())[:num_layers])
		self.avgpool = nn.AvgPool2d(pool_size, stride=1) 
开发者ID:JHUVisionLab,项目名称:multi-modal-regression,代码行数:25,代码来源:featureModels.py

示例12: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self,option = 'resnet18',pret=True):
        super(ResBase, self).__init__()
        self.dim = 2048
        if option == 'resnet18':
            model_ft = models.resnet18(pretrained=pret)
            self.dim = 512
        if option == 'resnet50':
            model_ft = models.resnet50(pretrained=pret)
        if option == 'resnet101':
            model_ft = models.resnet101(pretrained=pret)
        if option == 'resnet152':
            model_ft = models.resnet152(pretrained=pret)
        if option == 'resnet200':
            model_ft = Res200()
        if option == 'resnetnext':
            model_ft = ResNeXt(layer_num=101)
        mod = list(model_ft.children())
        mod.pop()
        #self.model_ft =model_ft
        self.features = nn.Sequential(*mod) 
开发者ID:mil-tokyo,项目名称:MCD_DA,代码行数:22,代码来源:basenet.py

示例13: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if(num==18):
            self.net = tv.resnet18(pretrained=pretrained)
        elif(num==34):
            self.net = tv.resnet34(pretrained=pretrained)
        elif(num==50):
            self.net = tv.resnet50(pretrained=pretrained)
        elif(num==101):
            self.net = tv.resnet101(pretrained=pretrained)
        elif(num==152):
            self.net = tv.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
开发者ID:richzhang,项目名称:PerceptualSimilarity,代码行数:24,代码来源:pretrained_networks.py

示例14: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self):
        super(ResNet50Fc, self).__init__()
        model_resnet50 = models.resnet50(pretrained=True)
        self.conv1 = model_resnet50.conv1
        self.bn1 = model_resnet50.bn1
        self.relu = model_resnet50.relu
        self.maxpool = model_resnet50.maxpool
        self.layer1 = model_resnet50.layer1
        self.layer2 = model_resnet50.layer2
        self.layer3 = model_resnet50.layer3
        self.layer4 = model_resnet50.layer4
        self.avgpool = model_resnet50.avgpool
        self.__in_features = model_resnet50.fc.in_features 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:15,代码来源:backbone.py

示例15: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet50 [as 别名]
def __init__(self):
        super(ResNet50Fc, self).__init__()
        model_resnet50 = models.resnet50(pretrained=True)
        self.conv1 = model_resnet50.conv1
        self.bn1 = model_resnet50.bn1
        self.relu = model_resnet50.relu
        self.maxpool = model_resnet50.maxpool
        self.layer1 = model_resnet50.layer1
        self.layer2 = model_resnet50.layer2
        self.layer3 = model_resnet50.layer3
        self.layer4 = model_resnet50.layer4
        self.avgpool = model_resnet50.avgpool 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:14,代码来源:backbone.py


注:本文中的torchvision.models.resnet50方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。