本文整理汇总了Python中torchvision.models.resnet34方法的典型用法代码示例。如果您正苦于以下问题:Python models.resnet34方法的具体用法?Python models.resnet34怎么用?Python models.resnet34使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models
的用法示例。
在下文中一共展示了models.resnet34方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, sinc_out, hidden_dim, sinc_kernel=251, sinc_stride=1, conv_stride=5, kernel_size=21, pretrained=True,name="Resnet50"):
super().__init__(name=name)
self.sinc = SincConv_fast(1, sinc_out, sinc_kernel,
sample_rate=16000,
padding='SAME',
stride=sinc_stride,
pad_mode='reflect'
)
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=kernel_size, stride=conv_stride, padding= kernel_size // 2, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(64))
resnet = models.resnet34(pretrained=pretrained)
self.resnet = nn.Sequential(resnet.layer1,
resnet.layer2,
resnet.layer3,
resnet.layer4
)
self.conv2 = nn.Sequential(nn.Conv2d(512, 256, kernel_size=[2, 1], stride=1, bias=False))
self.emb_dim = hidden_dim
示例2: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, num_layers, pretrained, num_input_images=1):
super(ResnetEncoder, self).__init__()
self.num_ch_enc = np.array([64, 64, 128, 256, 512])
resnets = {18: models.resnet18,
34: models.resnet34,
50: models.resnet50,
101: models.resnet101,
152: models.resnet152}
if num_layers not in resnets:
raise ValueError("{} is not a valid number of resnet layers".format(num_layers))
if num_input_images > 1:
self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
else:
self.encoder = resnets[num_layers](pretrained)
if num_layers > 34:
self.num_ch_enc[1:] *= 4
示例3: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, model_id, project_dir):
super(ImgNet, self).__init__()
self.model_id = model_id
self.project_dir = project_dir
self.create_model_dirs()
resnet34 = models.resnet34()
# load pretrained model:
resnet34.load_state_dict(torch.load("/root/3DOD_thesis/pretrained_models/resnet/resnet34-333f7ec4.pth"))
# remove fully connected layer:
self.resnet34 = nn.Sequential(*list(resnet34.children())[:-2])
self.avg_pool = nn.AvgPool2d(kernel_size=7)
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 2*8 + 3 + 1)
示例4: resnet34_ids_pre
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def resnet34_ids_pre(num_attributes, ids_embedding_size, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = zoo.resnet34(pretrained=True)
for param in model.parameters():
param.requires_grad = False
# Remove the last fully-connected layer
# Parameters of newly constructed modules have requires_grad=True by default
model = nn.Sequential(*list(model.children())[:-1])
classifier_attr = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
return model, classifier_attr, classifier_ids
示例5: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, num_layers):
super(ResNet_BasicBlock_OS16, self).__init__()
if num_layers == 18:
resnet = models.resnet18()
# load pretrained model:
resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet18-5c106cde.pth"))
# remove fully connected layer, avg pool and layer5:
self.resnet = nn.Sequential(*list(resnet.children())[:-3])
num_blocks = 2
print ("pretrained resnet, 18")
elif num_layers == 34:
resnet = models.resnet34()
# load pretrained model:
resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet34-333f7ec4.pth"))
# remove fully connected layer, avg pool and layer5:
self.resnet = nn.Sequential(*list(resnet.children())[:-3])
num_blocks = 3
print ("pretrained resnet, 34")
else:
raise Exception("num_layers must be in {18, 34}!")
self.layer5 = make_layer(BasicBlock, in_channels=256, channels=512, num_blocks=num_blocks, stride=1, dilation=2)
示例6: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if(num==18):
self.net = tv.resnet18(pretrained=pretrained)
elif(num==34):
self.net = tv.resnet34(pretrained=pretrained)
elif(num==50):
self.net = tv.resnet50(pretrained=pretrained)
elif(num==101):
self.net = tv.resnet101(pretrained=pretrained)
elif(num==152):
self.net = tv.resnet152(pretrained=pretrained)
self.N_slices = 5
self.conv1 = self.net.conv1
self.bn1 = self.net.bn1
self.relu = self.net.relu
self.maxpool = self.net.maxpool
self.layer1 = self.net.layer1
self.layer2 = self.net.layer2
self.layer3 = self.net.layer3
self.layer4 = self.net.layer4
示例7: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if(num==18):
self.net = models.resnet18(pretrained=pretrained)
elif(num==34):
self.net = models.resnet34(pretrained=pretrained)
elif(num==50):
self.net = models.resnet50(pretrained=pretrained)
elif(num==101):
self.net = models.resnet101(pretrained=pretrained)
elif(num==152):
self.net = models.resnet152(pretrained=pretrained)
self.N_slices = 5
self.conv1 = self.net.conv1
self.bn1 = self.net.bn1
self.relu = self.net.relu
self.maxpool = self.net.maxpool
self.layer1 = self.net.layer1
self.layer2 = self.net.layer2
self.layer3 = self.net.layer3
self.layer4 = self.net.layer4
示例8: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if (num == 18):
self.net = models.resnet18(pretrained=pretrained)
elif (num == 34):
self.net = models.resnet34(pretrained=pretrained)
elif (num == 50):
self.net = models.resnet50(pretrained=pretrained)
elif (num == 101):
self.net = models.resnet101(pretrained=pretrained)
elif (num == 152):
self.net = models.resnet152(pretrained=pretrained)
self.N_slices = 5
self.conv1 = self.net.conv1
self.bn1 = self.net.bn1
self.relu = self.net.relu
self.maxpool = self.net.maxpool
self.layer1 = self.net.layer1
self.layer2 = self.net.layer2
self.layer3 = self.net.layer3
self.layer4 = self.net.layer4
示例9: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self, layers, atrous, pretrained=True):
super(ResNet, self).__init__()
self.inner_layer = []
if layers == 18:
self.backbone = models.resnet18(pretrained=pretrained)
elif layers == 34:
self.backbone = models.resnet34(pretrained=pretrained)
elif layers == 50:
self.backbone = models.resnet50(pretrained=pretrained)
elif layers == 101:
self.backbone = models.resnet101(pretrained=pretrained)
elif layers == 152:
self.backbone = models.resnet152(pretrained=pretrained)
else:
raise ValueError('resnet.py: network layers is no support yet')
def hook_func(module, input, output):
self.inner_layer.append(output)
self.backbone.layer1.register_forward_hook(hook_func)
self.backbone.layer2.register_forward_hook(hook_func)
self.backbone.layer3.register_forward_hook(hook_func)
self.backbone.layer4.register_forward_hook(hook_func)
示例10: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self):
super(ResNet34Fc, self).__init__()
model_resnet34 = models.resnet34(pretrained=True)
self.conv1 = model_resnet34.conv1
self.bn1 = model_resnet34.bn1
self.relu = model_resnet34.relu
self.maxpool = model_resnet34.maxpool
self.layer1 = model_resnet34.layer1
self.layer2 = model_resnet34.layer2
self.layer3 = model_resnet34.layer3
self.layer4 = model_resnet34.layer4
self.avgpool = model_resnet34.avgpool
self.__in_features = model_resnet34.fc.in_features
示例11: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def __init__(self):
super(ResNet34Fc, self).__init__()
model_resnet34 = models.resnet34(pretrained=True)
self.conv1 = model_resnet34.conv1
self.bn1 = model_resnet34.bn1
self.relu = model_resnet34.relu
self.maxpool = model_resnet34.maxpool
self.layer1 = model_resnet34.layer1
self.layer2 = model_resnet34.layer2
self.layer3 = model_resnet34.layer3
self.layer4 = model_resnet34.layer4
self.avgpool = model_resnet34.avgpool
示例12: resnet34
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def resnet34(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-34 model.
"""
model = models.resnet34(pretrained=False, num_classes=num_classes)
if pretrained is not None:
settings = pretrained_settings['resnet34'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
示例13: test_train_step
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def test_train_step(self):
# test that the model can be run in a train step
model = models.resnet34(pretrained=False)
classy_model = ClassyModel.from_model(model)
config = get_fast_test_task_config()
task = build_task(config)
task.set_model(classy_model)
trainer = LocalTrainer()
trainer.train(task)
示例14: _load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def _load_pytorch_model(model_name, summary):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
import torch
if torch.cuda.is_available():
_model = _model.cuda()
from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
import numpy as np
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
pmodel = ClsPyTorchModel(
_model, bounds=(
0, 1), num_classes=1000, preprocessing=(
mean, std))
return pmodel
示例15: load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import resnet34 [as 别名]
def load_pytorch_model(model_name):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
return _model