本文整理汇总了Python中torchvision.models.resnet.resnet34方法的典型用法代码示例。如果您正苦于以下问题:Python resnet.resnet34方法的具体用法?Python resnet.resnet34怎么用?Python resnet.resnet34使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models.resnet
的用法示例。
在下文中一共展示了resnet.resnet34方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def __init__(self, skel_desc, pixelwise_loss):
super().__init__()
self.data_specs = DataSpecs(
ImageSpecs(256, mean=ImageSpecs.IMAGENET_MEAN, stddev=ImageSpecs.IMAGENET_STDDEV),
JointsSpecs(skel_desc, n_dims=3),
)
self.pixelwise_loss = pixelwise_loss
resnet = resnet34(pretrained=True)
self.in_cnn = ResNetFeatureExtractor(resnet)
self.xy_hm_cnn = _XYCnn(resnet, skel_desc.n_joints)
self.zy_hm_cnn = _ChatterboxCnn(skel_desc.n_joints, shrink_width=True)
self.xz_hm_cnn = _ChatterboxCnn(skel_desc.n_joints, shrink_width=False)
示例2: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def __init__(self,
voxel_dimension=(9,180,240), # dimension of voxel will be C x 2 x H x W
crop_dimension=(224, 224), # dimension of crop before it goes into classifier
num_classes=101,
mlp_layers=[1, 30, 30, 1],
activation=nn.LeakyReLU(negative_slope=0.1),
pretrained=True):
nn.Module.__init__(self)
self.quantization_layer = QuantizationLayer(voxel_dimension, mlp_layers, activation)
self.classifier = resnet34(pretrained=pretrained)
self.crop_dimension = crop_dimension
# replace fc layer and first convolutional layer
input_channels = 2*voxel_dimension[0]
self.classifier.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.classifier.fc = nn.Linear(self.classifier.fc.in_features, num_classes)
示例3: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def __init__(self, pretrained=True, input_channels=3):
model = resnet.resnet34(pretrained=pretrained)
super().__init__(
model=model,
input_channels=input_channels)
示例4: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def __init__(self):
super().__init__()
rn34 = resnet34(pretrained=True)
# discard last Resnet block, avrpooling and classification FC
self.layer1 = nn.Sequential(*list(rn34.children())[:6])
self.layer2 = nn.Sequential(*list(rn34.children())[6:7])
# modify conv4 if necessary
# Always deal with stride in first block
modulelist = list(self.layer2.children())
_ModifyBlock(modulelist[0], stride=(1,1))
示例5: create_model
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def create_model(model_name, num_classes=1000, pretrained=False, **kwargs):
if 'test_time_pool' in kwargs:
test_time_pool = kwargs.pop('test_time_pool')
else:
test_time_pool = True
if model_name == 'dpn68':
model = dpn68(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn68b':
model = dpn68b(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn92':
model = dpn92(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn98':
model = dpn98(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn131':
model = dpn131(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn107':
model = dpn107(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'resnet18':
model = resnet18(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet34':
model = resnet34(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet50':
model = resnet50(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet101':
model = resnet101(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet152':
model = resnet152(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet121':
model = densenet121(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet161':
model = densenet161(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet169':
model = densenet169(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet201':
model = densenet201(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'inception_v3':
model = inception_v3(
pretrained=pretrained, num_classes=num_classes, transform_input=False, **kwargs)
else:
assert False, "Unknown model architecture (%s)" % model_name
return model
示例6: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet34 [as 别名]
def __init__(self, fc_layers=None, dropout=None, pretrained=True):
super().__init__()
# Store settings, maybe someone will be interested to see them
self.fc_layers = fc_layers
self.dropout = dropout
self.pretrained = pretrained
self.head_layers = 8
self.group_cut_layers = (6, 10)
# Load backbbone
backbone = m.resnet34(pretrained=pretrained)
# If fc layers is set, let's put custom head
if fc_layers:
# Take out the old head and let's put the new head
valid_children = list(backbone.children())[:-2]
valid_children.extend([
l.AdaptiveConcatPool2d(),
l.Flatten()
])
layer_inputs = [NET_OUTPUT] + fc_layers[:-1]
dropout = dropout or [None] * len(fc_layers)
for idx, (layer_input, layet_output, layer_dropout) in enumerate(zip(layer_inputs, fc_layers, dropout)):
valid_children.append(nn.BatchNorm1d(layer_input))
if layer_dropout:
valid_children.append(nn.Dropout(layer_dropout))
valid_children.append(nn.Linear(layer_input, layet_output))
if idx == len(fc_layers) - 1:
# Last layer
valid_children.append(nn.LogSoftmax(dim=1))
else:
valid_children.append(nn.ReLU())
final_model = nn.Sequential(*valid_children)
else:
final_model = backbone
self.model = final_model