本文整理汇总了Python中torchvision.models.resnet.resnet101方法的典型用法代码示例。如果您正苦于以下问题:Python resnet.resnet101方法的具体用法?Python resnet.resnet101怎么用?Python resnet.resnet101使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models.resnet
的用法示例。
在下文中一共展示了resnet.resnet101方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet101 [as 别名]
def __init__(self, pretrained=True, input_channels=3):
model = resnet.resnet101(pretrained=pretrained)
super().__init__(
model=model,
input_channels=input_channels)
示例2: convert_deferred_batch_norm
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet101 [as 别名]
def convert_deferred_batch_norm(cls, module: TModule, chunks: int = 1) -> TModule:
"""Converts a :class:`nn.BatchNorm` or underlying
:class:`nn.BatchNorm`s into :class:`DeferredBatchNorm`::
from torchvision.models.resnet import resnet101
from torchgpipe.batchnorm import DeferredBatchNorm
model = resnet101()
model = DeferredBatchNorm.convert_deferred_batch_norm(model)
"""
if isinstance(module, DeferredBatchNorm) and module.chunks is chunks:
return cast(TModule, module)
module_output: nn.Module = module
if isinstance(module, _BatchNorm) and module.track_running_stats:
module_output = DeferredBatchNorm(module.num_features,
module.eps,
module.momentum,
module.affine,
chunks)
if module.affine:
module_output.register_parameter('weight', module.weight)
module_output.register_parameter('bias', module.bias)
module_output.register_buffer('running_mean', module.running_mean)
module_output.register_buffer('running_var', module.running_var)
module_output.register_buffer('num_batches_tracked', module.num_batches_tracked)
for name, child in module.named_children():
module_output.add_module(name, cls.convert_deferred_batch_norm(child, chunks))
return cast(TModule, module_output)
示例3: load_resnet
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet101 [as 别名]
def load_resnet():
model = resnet101(pretrained=True)
del model.layer4
del model.avgpool
del model.fc
return model
示例4: get
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet101 [as 别名]
def get(cls, args):
model = ResNet3D(Bottleneck3D, [3, 8, 36, 3]) # 101
if args.pretrained:
from torchvision.models.resnet import resnet101
model2d = resnet101(pretrained=True)
model.load_2d(model2d)
return model
示例5: create_model
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import resnet101 [as 别名]
def create_model(model_name, num_classes=1000, pretrained=False, **kwargs):
if 'test_time_pool' in kwargs:
test_time_pool = kwargs.pop('test_time_pool')
else:
test_time_pool = True
if model_name == 'dpn68':
model = dpn68(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn68b':
model = dpn68b(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn92':
model = dpn92(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn98':
model = dpn98(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn131':
model = dpn131(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'dpn107':
model = dpn107(
pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
elif model_name == 'resnet18':
model = resnet18(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet34':
model = resnet34(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet50':
model = resnet50(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet101':
model = resnet101(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'resnet152':
model = resnet152(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet121':
model = densenet121(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet161':
model = densenet161(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet169':
model = densenet169(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'densenet201':
model = densenet201(pretrained=pretrained, num_classes=num_classes, **kwargs)
elif model_name == 'inception_v3':
model = inception_v3(
pretrained=pretrained, num_classes=num_classes, transform_input=False, **kwargs)
else:
assert False, "Unknown model architecture (%s)" % model_name
return model