本文整理汇总了Python中torchvision.models.resnet.model_urls方法的典型用法代码示例。如果您正苦于以下问题:Python resnet.model_urls方法的具体用法?Python resnet.model_urls怎么用?Python resnet.model_urls使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models.resnet
的用法示例。
在下文中一共展示了resnet.model_urls方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def __init__(self):
super(Model2, self).__init__()
# fine tuning the ResNet helped significantly with the accuracy
base_model = MyResNet(BasicBlock, [2, 2, 2, 2])
base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
# code needed to deactivate fine tuning of resnet
#for param in base_model.parameters():
# param.requires_grad = False
self.base_model = base_model
self.drop0 = nn.Dropout2d(0.05)
self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(256)
self.drop1 = nn.Dropout2d(0.05)
self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.drop2 = nn.Dropout2d(0.05)
self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
示例2: init
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def init(self, model_dir=None, gain=1.):
self.model_dir = model_dir if model_dir is not None else self.model_dir
sd = model_zoo.load_url(model_urls['resnet18'], model_dir=self.model_dir)
# sd = model_zoo.load_url(model_urls['resnet34'], model_dir='./models/')
del sd['fc.weight']
del sd['fc.bias']
self.load_state_dict(sd, strict=False)
# for idx in range(len(self.stem)):
# m = self.stem[idx]
# if hasattr(m, 'weight') and not isinstance(m, torch.nn.BatchNorm2d):
# # torch.nn.init.kaiming_normal_(self.stem.weight, mode='fan_in', nonlinearity='linear')
# torch.nn.init.xavier_normal_(m.weight, gain=gain)
# LOGGER.debug('initialize stem weight')
#
# for idx in range(len(self.conv1d)):
# m = self.conv1d[idx]
# if hasattr(m, 'weight') and not isinstance(m, torch.nn.BatchNorm1d):
# # torch.nn.init.kaiming_normal_(self.stem.weight, mode='fan_in', nonlinearity='linear')
# torch.nn.init.xavier_normal_(m.weight, gain=gain)
# LOGGER.debug('initialize conv1d weight')
# torch.nn.init.kaiming_uniform_(self.fc.weight, mode='fan_in', nonlinearity='sigmoid')
torch.nn.init.xavier_uniform_(self.fc.weight, gain=gain)
LOGGER.debug('initialize classifier weight')
示例3: __init__
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def __init__(self, raw_model_dir, use_flow, logger):
super(BackboneModel, self).__init__()
self.use_flow = use_flow
model = ResNet(Bottleneck, [3, 4, 6, 3])
model.load_state_dict(
model_zoo.load_url(model_urls['resnet50'], model_dir=raw_model_dir))
logger.info('Model restored from pretrained resnet50')
self.feature = nn.Sequential(*list(model.children())[:-2])
self.base = list(self.feature.parameters())
if self.use_flow:
self.flow_branch = self.get_flow_branch(model)
self.rgb_branch = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool)
self.fuse_branch = nn.Sequential(*list(model.children())[4:-2])
self.fea_dim = model.fc.in_features
示例4: resnet18_ids
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet18_ids(num_attributes, ids_embedding_size, pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
classifier = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet18'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier, classifier_ids
示例5: resnet18
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet18(output_layers=None, pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
"""
if output_layers is None:
output_layers = ['default']
else:
for l in output_layers:
if l not in ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']:
raise ValueError('Unknown layer: {}'.format(l))
model = ResNet(BasicBlock, [2, 2, 2, 2], output_layers, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
示例6: resnet50
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet50(num_classes=1000, avgpool_size=7, use_dropout=False, pretrained=True):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(resnet.Bottleneck, [3, 4, 6, 3], num_classes=num_classes, avgpool_size=avgpool_size,
use_dropout=use_dropout)
if pretrained:
state_dict = resnet.model_zoo.load_url(resnet.model_urls['resnet50'])
current_state = model.state_dict()
keys = list(state_dict.keys())
for key in keys:
if not key.startswith('fc.'):
current_state[key] = state_dict[key]
model.load_state_dict(current_state)
return model
示例7: resnet101
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet101(num_classes=1000, avgpool_size=7, use_dropout=False, pretrained=True):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(resnet.Bottleneck, [3, 4, 23, 3], num_classes=num_classes, avgpool_size=avgpool_size,
use_dropout=use_dropout)
if pretrained:
state_dict = resnet.model_zoo.load_url(resnet.model_urls['resnet101'])
current_state = model.state_dict()
keys = list(state_dict.keys())
for key in keys:
if not key.startswith('fc.'):
current_state[key] = state_dict[key]
model.load_state_dict(current_state)
return model
示例8: resnet152
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet152(num_classes=1000, avgpool_size=7, use_dropout=False, pretrained=True):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(resnet.Bottleneck, [3, 8, 36, 3], num_classes=num_classes, avgpool_size=avgpool_size,
use_dropout=use_dropout)
if pretrained:
state_dict = resnet.model_zoo.load_url(resnet.model_urls['resnet152'])
current_state = model.state_dict()
keys = list(state_dict.keys())
for key in keys:
if not key.startswith('fc.'):
current_state[key] = state_dict[key]
model.load_state_dict(current_state)
return model
示例9: trinet
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def trinet(**kwargs):
"""Creates a TriNet network and loads the pretrained ResNet50 weights.
https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/2
"""
model = TriNet(Bottleneck, [3, 4, 6, 3], **kwargs)
pretrained_dict = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
# filter out fully connected keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith("fc")}
#for key, value in pretrained_dict.items():
# print(key)
# overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# load the new state dict
model.load_state_dict(model_dict)
endpoints = {}
endpoints["emb"] = None
return model, endpoints
示例10: stride_test
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def stride_test(**kwargs):
model = StrideTest(Bottleneck, [3, 4, 6, 3], **kwargs)
pretrained_dict = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
# filter out fully connected keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith("fc")}
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if not (k.startswith("layer4") and "downsample" in k)}
#pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith("layer4.0")}
#for key, value in pretrained_dict.items():
# print(key)
# overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# load the new state dict
model.load_state_dict(model_dict)
endpoints = {}
endpoints["emb"] = None
return model
示例11: resnet18
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet18(config_channels, anchors, num_cls, **kwargs):
model = ResNet(config_channels, anchors, num_cls, BasicBlock, [2, 2, 2, 2], **kwargs)
if config_channels.config.getboolean('model', 'pretrained'):
url = _model.model_urls['resnet18']
logging.info('use pretrained model: ' + url)
state_dict = model.state_dict()
for key, value in model_zoo.load_url(url).items():
if key in state_dict:
state_dict[key] = value
model.load_state_dict(state_dict)
return model
示例12: resnet34
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet34(config_channels, anchors, num_cls, **kwargs):
model = ResNet(config_channels, anchors, num_cls, BasicBlock, [3, 4, 6, 3], **kwargs)
if config_channels.config.getboolean('model', 'pretrained'):
url = _model.model_urls['resnet34']
logging.info('use pretrained model: ' + url)
state_dict = model.state_dict()
for key, value in model_zoo.load_url(url).items():
if key in state_dict:
state_dict[key] = value
model.load_state_dict(state_dict)
return model
示例13: resnet50
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet50(config_channels, anchors, num_cls, **kwargs):
model = ResNet(config_channels, anchors, num_cls, Bottleneck, [3, 4, 6, 3], **kwargs)
if config_channels.config.getboolean('model', 'pretrained'):
url = _model.model_urls['resnet50']
logging.info('use pretrained model: ' + url)
state_dict = model.state_dict()
for key, value in model_zoo.load_url(url).items():
if key in state_dict:
state_dict[key] = value
model.load_state_dict(state_dict)
return model
示例14: resnet101
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet101(config_channels, anchors, num_cls, **kwargs):
model = ResNet(config_channels, anchors, num_cls, Bottleneck, [3, 4, 23, 3], **kwargs)
if config_channels.config.getboolean('model', 'pretrained'):
url = _model.model_urls['resnet101']
logging.info('use pretrained model: ' + url)
state_dict = model.state_dict()
for key, value in model_zoo.load_url(url).items():
if key in state_dict:
state_dict[key] = value
model.load_state_dict(state_dict)
return model
示例15: resnet152
# 需要导入模块: from torchvision.models import resnet [as 别名]
# 或者: from torchvision.models.resnet import model_urls [as 别名]
def resnet152(config_channels, anchors, num_cls, **kwargs):
model = ResNet(config_channels, anchors, num_cls, Bottleneck, [3, 8, 36, 3], **kwargs)
if config_channels.config.getboolean('model', 'pretrained'):
url = _model.model_urls['resnet152']
logging.info('use pretrained model: ' + url)
state_dict = model.state_dict()
for key, value in model_zoo.load_url(url).items():
if key in state_dict:
state_dict[key] = value
model.load_state_dict(state_dict)
return model