本文整理汇总了Python中torchvision.models.mobilenet_v2方法的典型用法代码示例。如果您正苦于以下问题:Python models.mobilenet_v2方法的具体用法?Python models.mobilenet_v2怎么用?Python models.mobilenet_v2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models
的用法示例。
在下文中一共展示了models.mobilenet_v2方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def test():
""" Compare the classification result of WarmMobileNetV2 versus torchvision mobilenet_v2. """
new = WarmMobileNetV2()
from torchvision.models import mobilenet_v2
old = mobilenet_v2()
state = old.state_dict()
for k in list(state.keys()): # Map parameters of old, e.g. layer2.0.conv1.weight
s = k.split('.') # to parameters of new, e.g. layer2-0-conv1.weight
s = '-'.join(s[:-1])+'.'+s[-1]
state[s] = state.pop(k)
new.load_state_dict(state)
warm.util.summary(old)
warm.util.summary(new)
x = torch.randn(1, 3, 224, 224)
with torch.no_grad():
old.eval()
y_old = old(x)
new.eval()
y_new = new(x)
if torch.equal(y_old, y_new):
print('Success! Same results from old and new.')
else:
print('Warning! New and old produce different results.')
示例2: get_trained_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def get_trained_model(args, device, train_loader, val_loader, criterion):
if args.model == 'LeNet':
model = LeNet().to(device)
optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
for epoch in range(args.pretrain_epochs):
train(args, model, device, train_loader,
criterion, optimizer, epoch)
scheduler.step()
elif args.model == 'vgg16':
model = VGG(depth=16).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01,
momentum=0.9,
weight_decay=5e-4)
scheduler = MultiStepLR(
optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
for epoch in range(args.pretrain_epochs):
train(args, model, device, train_loader,
criterion, optimizer, epoch)
scheduler.step()
elif args.model == 'resnet18':
model = models.resnet18(pretrained=False, num_classes=10).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01,
momentum=0.9,
weight_decay=5e-4)
scheduler = MultiStepLR(
optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
for epoch in range(args.pretrain_epochs):
train(args, model, device, train_loader,
criterion, optimizer, epoch)
scheduler.step()
elif args.model == 'mobilenet_v2':
model = models.mobilenet_v2(pretrained=True).to(device)
if args.save_model:
torch.save(model.state_dict(), os.path.join(
args.experiment_data_dir, 'model_trained.pth'))
print('Model trained saved to %s', args.experiment_data_dir)
return model, optimizer
示例3: get_net
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def get_net(net_name, weight_path=None):
"""
根据网络名称获取模型
:param net_name: 网络名称
:param weight_path: 与训练权重路径
:return:
"""
pretrain = weight_path is None # 没有指定权重路径,则加载默认的预训练权重
if net_name in ['vgg', 'vgg16']:
net = models.vgg16(pretrained=pretrain)
elif net_name == 'vgg19':
net = models.vgg19(pretrained=pretrain)
elif net_name in ['resnet', 'resnet50']:
net = models.resnet50(pretrained=pretrain)
elif net_name == 'resnet101':
net = models.resnet101(pretrained=pretrain)
elif net_name in ['densenet', 'densenet121']:
net = models.densenet121(pretrained=pretrain)
elif net_name in ['inception']:
net = models.inception_v3(pretrained=pretrain)
elif net_name in ['mobilenet_v2']:
net = models.mobilenet_v2(pretrained=pretrain)
elif net_name in ['shufflenet_v2']:
net = models.shufflenet_v2_x1_0(pretrained=pretrain)
else:
raise ValueError('invalid network name:{}'.format(net_name))
# 加载指定路径的权重参数
if weight_path is not None and net_name.startswith('densenet'):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = torch.load(weight_path)
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
net.load_state_dict(state_dict)
elif weight_path is not None:
net.load_state_dict(torch.load(weight_path))
return net
示例4: test_mobilenet_v2_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def test_mobilenet_v2_model(input_var):
original_model = torchvision_models.mobilenet_v2(pretrained=True)
finetune_model = make_model(
'mobilenet_v2',
num_classes=1000,
pool=default,
pretrained=True,
)
copy_module_weights(original_model.classifier[-1], finetune_model._classifier)
assert_equal_model_outputs(input_var, original_model, finetune_model)
示例5: test_mobilenet_v2_model_with_another_input_size
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def test_mobilenet_v2_model_with_another_input_size(input_var):
model = make_model('mobilenet_v2', num_classes=1000, pretrained=True)
model(input_var)
示例6: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import mobilenet_v2 [as 别名]
def __init__(self, classes, model='resnet18'):
super(CNN, self).__init__()
if (model == 'resnet18'):
self.cnn = models.resnet18(pretrained=True)
self.cnn.fc = nn.Linear(512, classes)
elif (model == 'resnext50_32x4d'):
self.cnn = models.resnext50_32x4d(pretrained=True)
self.cnn.classifier = nn.Linear(1280, classes)
elif (model == 'mobilenet_v2'):
self.cnn = models.mobilenet_v2(pretrained=True)
self.cnn.classifier = nn.Linear(1280, classes)