当前位置: 首页>>代码示例>>Python>>正文


Python models.densenet169方法代码示例

本文整理汇总了Python中torchvision.models.densenet169方法的典型用法代码示例。如果您正苦于以下问题:Python models.densenet169方法的具体用法?Python models.densenet169怎么用?Python models.densenet169使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.models的用法示例。


在下文中一共展示了models.densenet169方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: densenet169

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet169 [as 别名]
def densenet169(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-169 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet169(num_classes=num_classes, pretrained=False)
    if pretrained is not None:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        settings = pretrained_settings['densenet169'][pretrained]
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(settings['url'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    model = modify_densenets(model)
    return model 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:25,代码来源:torchvision_models.py

示例2: Dense161

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet169 [as 别名]
def Dense161(config):
    return models.densenet169(pretrained=True) 
开发者ID:ngessert,项目名称:isic2019,代码行数:4,代码来源:models.py

示例3: dn169

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet169 [as 别名]
def dn169(pre): return children(densenet169(pre))[0] 
开发者ID:alecrubin,项目名称:pytorch-serverless,代码行数:3,代码来源:torch_imports.py

示例4: densenet169

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet169 [as 别名]
def densenet169(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-169 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet169(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['densenet169'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_densenets(model)
    return model 
开发者ID:Cadene,项目名称:pretrained-models.pytorch,代码行数:12,代码来源:torchvision_models.py

示例5: denseUnet169

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet169 [as 别名]
def denseUnet169(pretrained=False, d_block_type='basic', init_method='normal', **kwargs):
    r"""Densenet-121 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    d_block = get_decoder_block(d_block_type)
    model = DenseUNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), d_block=d_block,
                      **kwargs)


    if pretrained:
        w_init.init_weights(model, init_method)
        # Get state dict from the actual model
        model_dict = model.state_dict()
        # pretrained_dict = model_zoo.load_url(model_urls['resnet50'])
        pretrained_dict = models.densenet169(pretrained=True).state_dict()
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        # added to pytorch 0.4
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        # state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(pretrained_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                pretrained_dict[new_key] = pretrained_dict[key]
                del pretrained_dict[key]

        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
    #     model.load_state_dict(model_zoo.load_url(model_urls['densenet121']))
    return model 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:35,代码来源:dense_decoders.py


注:本文中的torchvision.models.densenet169方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。