本文整理汇总了Python中torchvision.models.densenet121方法的典型用法代码示例。如果您正苦于以下问题:Python models.densenet121方法的具体用法?Python models.densenet121怎么用?Python models.densenet121使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.models
的用法示例。
在下文中一共展示了models.densenet121方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_untargeted_densenet121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def test_untargeted_densenet121(image, label=None):
import torch
import torchvision.models as models
from perceptron.models.classification import PyTorchModel
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
model_pyt = models.densenet121(pretrained=True).eval()
if torch.cuda.is_available():
model_pyt = model_pyt.cuda()
model = PyTorchModel(
model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
print(np.argmax(model.predictions(image)))
attack = Attack(model, criterion=Misclassification())
adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
distance = adversarial_obj.distance
adversarial = adversarial_obj.image
return distance, adversarial
示例2: densenet121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def densenet121(num_classes=1000, pretrained='imagenet'):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet121(num_classes=num_classes, pretrained=False)
if pretrained is not None:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
settings = pretrained_settings['densenet121'][pretrained]
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(settings['url'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
model = modify_densenets(model)
return model
示例3: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def __init__(self, class_num ):
super(ft_net_dense,self).__init__()
model_ft = models.densenet121(pretrained=True)
# add pooling to the model
# in the originial version, pooling is written in the forward function
model_ft.features.avgpool = nn.AdaptiveAvgPool2d((1,1))
add_block = []
num_bottleneck = 1024
add_block += [nn.BatchNorm1d(num_bottleneck)]
add_block = nn.Sequential(*add_block)
add_block.apply(weights_init_kaiming)
model_ft.bn = add_block
self.model = model_ft
self.fc0 = nn.Linear(num_bottleneck, class_num, bias = True)
init.normal(self.fc0.weight.data, std=0.001)
if hasattr(self.fc0.bias, 'data'):
init.constant(self.fc0.bias.data, 0.0)
示例4: Dense121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def Dense121(config):
return models.densenet121(pretrained=True)
示例5: _load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def _load_pytorch_model(model_name, summary):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
import torch
if torch.cuda.is_available():
_model = _model.cuda()
from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
import numpy as np
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
pmodel = ClsPyTorchModel(
_model, bounds=(
0, 1), num_classes=1000, preprocessing=(
mean, std))
return pmodel
示例6: load_pytorch_model
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def load_pytorch_model(model_name):
import torchvision.models as models
switcher = {
'alexnet': lambda: models.alexnet(pretrained=True).eval(),
"vgg11": lambda: models.vgg11(pretrained=True).eval(),
"vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
"vgg13": lambda: models.vgg13(pretrained=True).eval(),
"vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
"vgg16": lambda: models.vgg16(pretrained=True).eval(),
"vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
"vgg19": lambda: models.vgg19(pretrained=True).eval(),
"vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
"resnet18": lambda: models.resnet18(pretrained=True).eval(),
"resnet34": lambda: models.resnet34(pretrained=True).eval(),
"resnet50": lambda: models.resnet50(pretrained=True).eval(),
"resnet101": lambda: models.resnet101(pretrained=True).eval(),
"resnet152": lambda: models.resnet152(pretrained=True).eval(),
"squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
"squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
"densenet121": lambda: models.densenet121(pretrained=True).eval(),
"densenet161": lambda: models.densenet161(pretrained=True).eval(),
"densenet201": lambda: models.densenet201(pretrained=True).eval(),
"inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
}
_load_model = switcher.get(model_name, None)
_model = _load_model()
return _model
示例7: dn121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def dn121(pre): return children(densenet121(pre))[0]
示例8: densenet121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def densenet121(num_classes=1000, pretrained='imagenet'):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet121(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['densenet121'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_densenets(model)
return model
示例9: denseUnet121
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def denseUnet121(pretrained=False, d_block_type='basic', init_method='normal', version=1, type_net="t", **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
d_block = BasicBlock
model = DenseUNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), d_block=d_block, **kwargs)
if pretrained:
w_init.init_weights(model, init_method)
# Get state dict from the actual model
model_dict = model.state_dict()
pretrained_dict = models.densenet121(pretrained=True).state_dict()
# exclude_model_dict = ["features.conv0.weight"]
model_shapes = [v.shape for k, v in model_dict.items()]
exclude_model_dict = []
exclude_model_dict = [k for k, v in pretrained_dict.items() if v.shape not in model_shapes]
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and k not in exclude_model_dict}
# added to pytorch 0.4
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
# state_dict = model_zoo.load_url(model_urls['densenet121'])
for key in list(pretrained_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
pretrained_dict[new_key] = pretrained_dict[key]
del pretrained_dict[key]
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
示例10: D3net_shared_weights
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def D3net_shared_weights(pretrained=False, d_block_type='basic', init_method='normal', version=1, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
d_block = get_decoder_block(d_block_type)
model = D3netSharedWeights(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), d_block=d_block,
**kwargs)
if pretrained:
w_init.init_weights(model, init_method)
# Get state dict from the actual model
model_dict = model.state_dict()
pretrained_dict = models.densenet121(pretrained=True).state_dict()
# exclude_model_dict = ["features.conv0.weight"]
model_shapes = [v.shape for k, v in model_dict.items()]
exclude_model_dict = []
exclude_model_dict = [k for k, v in pretrained_dict.items() if v.shape not in model_shapes]
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and k not in exclude_model_dict}
# added to pytorch 0.4
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
# state_dict = model_zoo.load_url(model_urls['densenet121'])
for key in list(pretrained_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
pretrained_dict[new_key] = pretrained_dict[key]
del pretrained_dict[key]
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
示例11: denseUnet169
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def denseUnet169(pretrained=False, d_block_type='basic', init_method='normal', **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
d_block = get_decoder_block(d_block_type)
model = DenseUNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), d_block=d_block,
**kwargs)
if pretrained:
w_init.init_weights(model, init_method)
# Get state dict from the actual model
model_dict = model.state_dict()
# pretrained_dict = model_zoo.load_url(model_urls['resnet50'])
pretrained_dict = models.densenet169(pretrained=True).state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# added to pytorch 0.4
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
# state_dict = model_zoo.load_url(model_urls['densenet121'])
for key in list(pretrained_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
pretrained_dict[new_key] = pretrained_dict[key]
del pretrained_dict[key]
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
# model.load_state_dict(model_zoo.load_url(model_urls['densenet121']))
return model
示例12: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def __init__(self, depth=121, num_feature=1024, num_classes=632, num_iteration = 3):
super(DenseNet, self).__init__()
self.depth = depth
self.base = models.densenet121(pretrained=True)
self.seblock = SELayer(channel=num_feature, reduction=16)
self.classifer1 = Classifier(num_feature=num_feature, dropout=0.25, num_classes=num_classes)
self.classifer2 = Classifier(num_feature=num_feature, dropout=0, num_classes=num_classes)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=num_feature, out_channels=32,
kernel_size=2, stride=2, num_iterations = num_iteration)
self.digit_capsules = CapsuleLayer(num_capsules=num_classes, num_route_nodes=32 * 3 * 3, in_channels=8,
out_channels=24, num_iterations = num_iteration)
示例13: get_net
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def get_net(net_name, weight_path=None):
"""
根据网络名称获取模型
:param net_name: 网络名称
:param weight_path: 与训练权重路径
:return:
"""
pretrain = weight_path is None # 没有指定权重路径,则加载默认的预训练权重
if net_name in ['vgg', 'vgg16']:
net = models.vgg16(pretrained=pretrain)
elif net_name == 'vgg19':
net = models.vgg19(pretrained=pretrain)
elif net_name in ['resnet', 'resnet50']:
net = models.resnet50(pretrained=pretrain)
elif net_name == 'resnet101':
net = models.resnet101(pretrained=pretrain)
elif net_name in ['densenet', 'densenet121']:
net = models.densenet121(pretrained=pretrain)
elif net_name in ['inception']:
net = models.inception_v3(pretrained=pretrain)
elif net_name in ['mobilenet_v2']:
net = models.mobilenet_v2(pretrained=pretrain)
elif net_name in ['shufflenet_v2']:
net = models.shufflenet_v2_x1_0(pretrained=pretrain)
else:
raise ValueError('invalid network name:{}'.format(net_name))
# 加载指定路径的权重参数
if weight_path is not None and net_name.startswith('densenet'):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = torch.load(weight_path)
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
net.load_state_dict(state_dict)
elif weight_path is not None:
net.load_state_dict(torch.load(weight_path))
return net
示例14: build
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def build(conf, phase='train'):
train = phase.lower() == 'train'
densenet121 = models.densenet121(pretrained=train)
rpn_net = RPN(phase, densenet121.features, conf)
if train: rpn_net.train()
else: rpn_net.eval()
return rpn_net
示例15: __init__
# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet121 [as 别名]
def __init__(self, device="cpu"):
super().__init__(device=device)
self.model = models.densenet121(pretrained=True)
self.model.to(self.device)
self.model.eval()