当前位置: 首页>>代码示例>>Python>>正文


Python torchvision.__version__方法代码示例

本文整理汇总了Python中torchvision.__version__方法的典型用法代码示例。如果您正苦于以下问题:Python torchvision.__version__方法的具体用法?Python torchvision.__version__怎么用?Python torchvision.__version__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision的用法示例。


在下文中一共展示了torchvision.__version__方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_default_conda_env

# 需要导入模块: import torchvision [as 别名]
# 或者: from torchvision import __version__ [as 别名]
def get_default_conda_env():
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import torch
    import torchvision

    return _mlflow_conda_env(
        additional_conda_deps=[
            "pytorch={}".format(torch.__version__),
            "torchvision={}".format(torchvision.__version__),
        ],
        additional_pip_deps=[
            # We include CloudPickle in the default environment because
            # it's required by the default pickle module used by `save_model()`
            # and `log_model()`: `mlflow.pytorch.pickle_module`.
            "cloudpickle=={}".format(cloudpickle.__version__)
        ],
        additional_conda_channels=[
            "pytorch",
        ]) 
开发者ID:mlflow,项目名称:mlflow,代码行数:24,代码来源:__init__.py

示例2: collect_env

# 需要导入模块: import torchvision [as 别名]
# 或者: from torchvision import __version__ [as 别名]
def collect_env():
    """Collect the information of the running environments."""
    env_info = {}
    env_info['sys.platform'] = sys.platform
    env_info['Python'] = sys.version.replace('\n', '')

    cuda_available = torch.cuda.is_available()
    env_info['CUDA available'] = cuda_available

    if cuda_available:
        from torch.utils.cpp_extension import CUDA_HOME
        env_info['CUDA_HOME'] = CUDA_HOME

        if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
            try:
                nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
                nvcc = subprocess.check_output(
                    f'"{nvcc}" -V | tail -n1', shell=True)
                nvcc = nvcc.decode('utf-8').strip()
            except subprocess.SubprocessError:
                nvcc = 'Not Available'
            env_info['NVCC'] = nvcc

        devices = defaultdict(list)
        for k in range(torch.cuda.device_count()):
            devices[torch.cuda.get_device_name(k)].append(str(k))
        for name, devids in devices.items():
            env_info['GPU ' + ','.join(devids)] = name

    gcc = subprocess.check_output('gcc --version | head -n1', shell=True)
    gcc = gcc.decode('utf-8').strip()
    env_info['GCC'] = gcc

    env_info['PyTorch'] = torch.__version__
    env_info['PyTorch compiling details'] = torch.__config__.show()

    env_info['TorchVision'] = torchvision.__version__

    env_info['OpenCV'] = cv2.__version__

    env_info['MMCV'] = mmcv.__version__
    env_info['MMDetection'] = mmdet.__version__
    from mmdet.ops import get_compiler_version, get_compiling_cuda_version
    env_info['MMDetection Compiler'] = get_compiler_version()
    env_info['MMDetection CUDA Compiler'] = get_compiling_cuda_version()
    return env_info 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:48,代码来源:collect_env.py

示例3: main

# 需要导入模块: import torchvision [as 别名]
# 或者: from torchvision import __version__ [as 别名]
def main():
  save_path = Path(args.save)
  save_dir  = save_path.parent
  name      = args.name
  save_dir.mkdir(parents=True, exist_ok=True)
  assert not save_path.exists(), '{:} already exists'.format(save_path)
  print ('torchvision version : {:}'.format(torchvision.__version__))

  if name == 'cifar10':
    dataset = dset.CIFAR10 (args.root, train=True)
  elif name == 'cifar100':
    dataset = dset.CIFAR100(args.root, train=True)
  elif name == 'imagenet-1k':
    dataset = dset.ImageFolder(osp.join(args.root, 'train'))
  else: raise TypeError("Unknow dataset : {:}".format(name))

  if hasattr(dataset, 'targets'):
    targets = dataset.targets
  elif hasattr(dataset, 'train_labels'):
    targets = dataset.train_labels
  elif hasattr(dataset, 'imgs'):
    targets = [x[1] for x in dataset.imgs]
  else:
    raise ValueError('invalid pattern')
  print ('There are {:} samples in this dataset.'.format( len(targets) ))

  class2index = defaultdict(list)
  train, valid = [], []
  random.seed(111)
  for index, cls in enumerate(targets):
    class2index[cls].append( index )
  classes = sorted( list(class2index.keys()) )
  for cls in classes:
    xlist = class2index[cls]
    xtrain = random.sample(xlist, int(len(xlist)*args.ratio))
    xvalid = list(set(xlist) - set(xtrain))
    train += xtrain
    valid += xvalid
  train.sort()
  valid.sort()
  ## for statistics
  class2numT, class2numV = defaultdict(int), defaultdict(int)
  for index in train:
    class2numT[ targets[index] ] += 1
  for index in valid:
    class2numV[ targets[index] ] += 1
  class2numT, class2numV = dict(class2numT), dict(class2numV)
  torch.save({'train': train,
              'valid': valid,
              'class2numTrain': class2numT,
              'class2numValid': class2numV}, save_path)
  print ('-'*80) 
开发者ID:D-X-Y,项目名称:AutoDL-Projects,代码行数:54,代码来源:prepare.py

示例4: collect_env_info

# 需要导入模块: import torchvision [as 别名]
# 或者: from torchvision import __version__ [as 别名]
def collect_env_info():
    data = []
    data.append(("sys.platform", sys.platform))
    data.append(("Python", sys.version.replace("\n", "")))
    data.append(("Numpy", np.__version__))
    try:
        from detectron2 import _C
    except ImportError:
        data.append(("detectron2._C", "failed to import"))
    else:
        data.append(("Detectron2 Compiler", _C.get_compiler_version()))
        data.append(("Detectron2 CUDA Compiler", _C.get_cuda_version()))

    data.append(get_env_module())
    data.append(("PyTorch", torch.__version__))
    data.append(("PyTorch Debug Build", torch.version.debug))
    try:
        data.append(("torchvision", torchvision.__version__))
    except AttributeError:
        data.append(("torchvision", "unknown"))

    has_cuda = torch.cuda.is_available()
    data.append(("CUDA available", has_cuda))
    if has_cuda:
        devices = defaultdict(list)
        for k in range(torch.cuda.device_count()):
            devices[torch.cuda.get_device_name(k)].append(str(k))
        for name, devids in devices.items():
            data.append(("GPU " + ",".join(devids), name))

        from torch.utils.cpp_extension import CUDA_HOME

        data.append(("CUDA_HOME", str(CUDA_HOME)))

        if CUDA_HOME is not None and os.path.isdir(CUDA_HOME):
            try:
                nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
                nvcc = subprocess.check_output("'{}' -V | tail -n1".format(nvcc), shell=True)
                nvcc = nvcc.decode("utf-8").strip()
            except subprocess.SubprocessError:
                nvcc = "Not Available"
            data.append(("NVCC", nvcc))

        cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
        if cuda_arch_list:
            data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
    data.append(("Pillow", PIL.__version__))

    try:
        import cv2

        data.append(("cv2", cv2.__version__))
    except ImportError:
        pass
    env_str = tabulate(data) + "\n"
    env_str += collect_torch_env()
    return env_str 
开发者ID:conansherry,项目名称:detectron2,代码行数:59,代码来源:collect_env.py

示例5: load_model

# 需要导入模块: import torchvision [as 别名]
# 或者: from torchvision import __version__ [as 别名]
def load_model(model_uri, **kwargs):
    """
    Load a PyTorch model from a local file or a run.

    :param model_uri: The location, in URI format, of the MLflow model, for example:

                      - ``/Users/me/path/to/local/model``
                      - ``relative/path/to/local/model``
                      - ``s3://my_bucket/path/to/model``
                      - ``runs:/<mlflow_run_id>/run-relative/path/to/model``
                      - ``models:/<model_name>/<model_version>``
                      - ``models:/<model_name>/<stage>``

                      For more information about supported URI schemes, see
                      `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#
                      artifact-locations>`_.

    :param kwargs: kwargs to pass to ``torch.load`` method.
    :return: A PyTorch model.

    .. code-block:: python
        :caption: Example

        import torch
        import mlflow
        import mlflow.pytorch
        # Set values
        model_path_dir = ...
        run_id = "96771d893a5e46159d9f3b49bf9013e2"
        pytorch_model = mlflow.pytorch.load_model("runs:/" + run_id + "/" + model_path_dir)
        y_pred = pytorch_model(x_new_data)
    """
    import torch

    local_model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    try:
        pyfunc_conf = _get_flavor_configuration(
            model_path=local_model_path, flavor_name=pyfunc.FLAVOR_NAME)
    except MlflowException:
        pyfunc_conf = {}
    code_subpath = pyfunc_conf.get(pyfunc.CODE)
    if code_subpath is not None:
        pyfunc_utils._add_code_to_system_path(
            code_path=os.path.join(local_model_path, code_subpath))

    pytorch_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
    if torch.__version__ != pytorch_conf["pytorch_version"]:
        _logger.warning(
            "Stored model version '%s' does not match installed PyTorch version '%s'",
            pytorch_conf["pytorch_version"], torch.__version__)
    torch_model_artifacts_path = os.path.join(local_model_path, pytorch_conf['model_data'])
    return _load_model(path=torch_model_artifacts_path, **kwargs) 
开发者ID:mlflow,项目名称:mlflow,代码行数:54,代码来源:__init__.py


注:本文中的torchvision.__version__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。