当前位置: 首页>>代码示例>>Python>>正文


Python vocab.append方法代码示例

本文整理汇总了Python中torchtext.vocab.append方法的典型用法代码示例。如果您正苦于以下问题:Python vocab.append方法的具体用法?Python vocab.append怎么用?Python vocab.append使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchtext.vocab的用法示例。


在下文中一共展示了vocab.append方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_batches

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def create_batches(self):
        if self.train:
            def pool(data, random_shuffler):
                for p in torchtext.data.batch(data, self.batch_size * 100):
                    p_batch = torchtext.data.batch(
                        sorted(p, key=self.sort_key),
                        self.batch_size, self.batch_size_fn)
                    for b in random_shuffler(list(p_batch)):
                        yield b
            self.batches = pool(self.data(), self.random_shuffler)
        else:
            self.batches = []
            # print(self.data().src)
            # print(self.data().node1)

            for b in torchtext.data.batch(self.data(), self.batch_size,
                                          self.batch_size_fn):
                # print(b[0].src)
                # print(b[0].node1)

                self.batches.append(sorted(b, key=self.sort_key)) 
开发者ID:diegma,项目名称:graph-2-text,代码行数:23,代码来源:IO.py

示例2: build_vocab

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def build_vocab(train, dev, test, opt):
        fields = train.fields

        merge_list = []
        merge_name_list = ('src', 'tbl')
        for split in (dev, test, train,):
            for merge_name_it in merge_name_list:
                fields[merge_name_it].build_vocab(
                    split, max_size=opt.src_vocab_size, min_freq=0)
                merge_list.append(fields[merge_name_it].vocab)
        # build vocabulary only based on the training set
        fields["ent"].build_vocab(
            train, max_size=opt.src_vocab_size, min_freq=0)
        fields["lay"].build_vocab(
            train, max_size=opt.src_vocab_size, min_freq=0)
        fields["cond_op"].build_vocab(
            train, max_size=opt.src_vocab_size, min_freq=0)

        # need to know all the words to filter the pretrained word embeddings
        merged_vocab = merge_vocabs(merge_list, vocab_size=opt.src_vocab_size)
        for merge_name_it in merge_name_list:
            fields[merge_name_it].vocab = merged_vocab 
开发者ID:prezaei85,项目名称:nl2sql,代码行数:24,代码来源:IO.py

示例3: create_batches

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def create_batches(self):
        """ Create batches """
        if self.train:
            def _pool(data, random_shuffler):
                for p in torchtext.data.batch(data, self.batch_size * 100):
                    p_batch = torchtext.data.batch(
                        sorted(p, key=self.sort_key),
                        self.batch_size, self.batch_size_fn)
                    for b in random_shuffler(list(p_batch)):
                        yield b
            self.batches = _pool(self.data(), self.random_shuffler)
        else:
            self.batches = []
            for b in torchtext.data.batch(self.data(), self.batch_size,
                                          self.batch_size_fn):
                self.batches.append(sorted(b, key=self.sort_key)) 
开发者ID:InitialBug,项目名称:BiSET,代码行数:18,代码来源:inputter.py

示例4: save_fields_to_vocab

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def save_fields_to_vocab(fields):
    """
    Save Vocab objects in Field objects to `vocab.pt` file.
    """
    vocab = []
    for k, f in fields.items():
        if f is not None and 'vocab' in f.__dict__:
            f.vocab.stoi = dict(f.vocab.stoi)
            vocab.append((k, f.vocab))
    return vocab 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:12,代码来源:IO.py

示例5: collect_features

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def collect_features(fields, side="src"):
    """
    Collect features from Field object.
    """
    assert side in ["src", "tgt"]
    feats = []
    for j in count():
        key = side + "_feat_" + str(j)
        if key not in fields:
            break
        feats.append(key)
    return feats 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:14,代码来源:IO.py

示例6: collect_feature_vocabs

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def collect_feature_vocabs(fields, side):
    """
    Collect feature Vocab objects from Field object.
    """
    assert side in ['src', 'tgt']
    feature_vocabs = []
    for j in count():
        key = side + "_feat_" + str(j)
        if key not in fields:
            break
        feature_vocabs.append(fields[key].vocab)
    return feature_vocabs 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:14,代码来源:IO.py

示例7: create_batches

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def create_batches(self):
        if self.train:
            def pool(data, random_shuffler):
                for p in torchtext.data.batch(data, self.batch_size * 100):
                    p_batch = torchtext.data.batch(
                        sorted(p, key=self.sort_key),
                        self.batch_size, self.batch_size_fn)
                    for b in random_shuffler(list(p_batch)):
                        yield b
            self.batches = pool(self.data(), self.random_shuffler)
        else:
            self.batches = []
            for b in torchtext.data.batch(self.data(), self.batch_size,
                                          self.batch_size_fn):
                self.batches.append(sorted(b, key=self.sort_key)) 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:17,代码来源:IO.py

示例8: create_batches

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def create_batches(self):
        if self.train:
            self.batches = torchtext.data.pool(
                self.data(), self.batch_size,
                self.sort_key, self.batch_size_fn,
                random_shuffler=self.random_shuffler)
        else:
            self.batches = []
            for b in torchtext.data.batch(self.data(), self.batch_size,
                                          self.batch_size_fn):
                self.batches.append(sorted(b, key=self.sort_key)) 
开发者ID:matthewmackay,项目名称:reversible-rnn,代码行数:13,代码来源:IO.py

示例9: save_vocab

# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import append [as 别名]
def save_vocab(fields):
        vocab = []
        for k, f in fields.items():
            if 'vocab' in f.__dict__:
                f.vocab.stoi = dict(f.vocab.stoi)
                vocab.append((k, f.vocab))
        return vocab 
开发者ID:prezaei85,项目名称:nl2sql,代码行数:9,代码来源:IO.py


注:本文中的torchtext.vocab.append方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。