本文整理汇总了Python中torchtext.vocab.Vocab方法的典型用法代码示例。如果您正苦于以下问题:Python vocab.Vocab方法的具体用法?Python vocab.Vocab怎么用?Python vocab.Vocab使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchtext.vocab
的用法示例。
在下文中一共展示了vocab.Vocab方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _dynamic_dict
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def _dynamic_dict(self, example, unk, pad):
# it would not be necessary to pass unk and pad if the method were
# called after fields becomes an attribute of self
src = example["src"]
src_vocab = Vocab(Counter(src), specials=[unk, pad])
self.src_vocabs.append(src_vocab)
# Map source tokens to indices in the dynamic dict.
src_map = torch.LongTensor([src_vocab.stoi[w] for w in src])
example["src_map"] = src_map
if "tgt" in example:
tgt = example["tgt"]
mask = torch.LongTensor(
[0] + [src_vocab.stoi[w] for w in tgt] + [0])
example["alignment"] = mask
return example
示例2: test_imdb
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_imdb(self):
from torchtext.experimental.datasets import IMDB
from torchtext.vocab import Vocab
# smoke test to ensure imdb works properly
train_dataset, test_dataset = IMDB()
self.assertEqual(len(train_dataset), 25000)
self.assertEqual(len(test_dataset), 25000)
self.assertEqual(train_dataset[0][1][:10],
torch.tensor([13, 1568, 13, 246, 35468, 43, 64, 398, 1135, 92]).long())
self.assertEqual(train_dataset[-1][1][:10],
torch.tensor([2, 71, 4555, 194, 3328, 15144, 42, 227, 148, 8]).long())
self.assertEqual(test_dataset[0][1][:10],
torch.tensor([13, 125, 1051, 5, 246, 1652, 8, 277, 66, 20]).long())
self.assertEqual(test_dataset[-1][1][:10],
torch.tensor([13, 1035, 14, 21, 28, 2, 1051, 1275, 1008, 3]).long())
# Test API with a vocab input object
old_vocab = train_dataset.get_vocab()
new_vocab = Vocab(counter=old_vocab.freqs, max_size=2500)
new_train_data, new_test_data = IMDB(vocab=new_vocab)
示例3: test_squad1
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_squad1(self):
from torchtext.experimental.datasets import SQuAD1
from torchtext.vocab import Vocab
# smoke test to ensure imdb works properly
train_dataset, dev_dataset = SQuAD1()
self.assertEqual(len(train_dataset), 87599)
self.assertEqual(len(dev_dataset), 10570)
self.assertEqual(train_dataset[100]['question'],
torch.tensor([7, 24, 86, 52, 2, 373, 887, 18, 12797, 11090, 1356, 2, 1788, 3273, 16]).long())
self.assertEqual(train_dataset[100]['ans_pos'][0],
torch.tensor([72, 72]).long())
self.assertEqual(dev_dataset[100]['question'],
torch.tensor([42, 27, 669, 7438, 17, 2, 1950, 3273, 17252, 389, 16]).long())
self.assertEqual(dev_dataset[100]['ans_pos'][0],
torch.tensor([45, 48]).long())
# Test API with a vocab input object
old_vocab = train_dataset.get_vocab()
new_vocab = Vocab(counter=old_vocab.freqs, max_size=2500)
new_train_data, new_test_data = SQuAD1(vocab=new_vocab)
示例4: test_squad2
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_squad2(self):
from torchtext.experimental.datasets import SQuAD2
from torchtext.vocab import Vocab
# smoke test to ensure imdb works properly
train_dataset, dev_dataset = SQuAD2()
self.assertEqual(len(train_dataset), 130319)
self.assertEqual(len(dev_dataset), 11873)
self.assertEqual(train_dataset[200]['question'],
torch.tensor([84, 50, 1421, 12, 5439, 4569, 17, 30, 2, 15202, 4754, 1421, 16]).long())
self.assertEqual(train_dataset[200]['ans_pos'][0],
torch.tensor([9, 9]).long())
self.assertEqual(dev_dataset[200]['question'],
torch.tensor([41, 29, 2, 66, 17016, 30, 0, 1955, 16]).long())
self.assertEqual(dev_dataset[200]['ans_pos'][0],
torch.tensor([40, 46]).long())
# Test API with a vocab input object
old_vocab = train_dataset.get_vocab()
new_vocab = Vocab(counter=old_vocab.freqs, max_size=2500)
new_train_data, new_test_data = SQuAD2(vocab=new_vocab)
示例5: test_vocab_specials_first
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_specials_first(self):
c = Counter("a a b b c c".split())
# add specials into vocabulary at first
v = vocab.Vocab(c, max_size=2, specials=['<pad>', '<eos>'])
expected_itos = ['<pad>', '<eos>', 'a', 'b']
expected_stoi = {x: index for index, x in enumerate(expected_itos)}
self.assertEqual(v.itos, expected_itos)
self.assertEqual(dict(v.stoi), expected_stoi)
# add specials into vocabulary at last
v = vocab.Vocab(c, max_size=2, specials=['<pad>', '<eos>'], specials_first=False)
expected_itos = ['a', 'b', '<pad>', '<eos>']
expected_stoi = {x: index for index, x in enumerate(expected_itos)}
self.assertEqual(v.itos, expected_itos)
self.assertEqual(dict(v.stoi), expected_stoi)
示例6: test_vocab_download_custom_vectors
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_download_custom_vectors(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
# Build a vocab and get vectors twice to test caching.
for i in range(2):
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors=Vectors('wiki.simple.vec',
url=FastText.url_base.format('simple')))
self.assertEqual(v.itos, ['<unk>', '<pad>', '<bos>',
'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T', 'hello', 'world'])
vectors = v.vectors.numpy()
# The first 5 entries in each vector.
expected_fasttext_simple_en = {
'hello': [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
'world': [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
}
for word in expected_fasttext_simple_en:
assert_allclose(vectors[v.stoi[word], :5],
expected_fasttext_simple_en[word])
assert_allclose(vectors[v.stoi['<unk>']], np.zeros(300))
# Delete the vectors after we're done to save disk space on CI
if os.environ.get("TRAVIS") == "true":
vec_file = os.path.join(self.project_root, ".vector_cache", "wiki.simple.vec")
conditional_remove(vec_file)
示例7: build_data
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def build_data(all_tokens, all_seqs):
vocab = Vocab.Vocab(collections.Counter(all_tokens),
specials=[PAD, BOS, EOS])
indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
return vocab, torch.tensor(indices)
示例8: test_vocab_basic
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_basic(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'])
expected_itos = ['<unk>', '<pad>', '<bos>',
'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T', 'hello', 'world']
expected_stoi = {x: index for index, x in enumerate(expected_itos)}
self.assertEqual(v.itos, expected_itos)
self.assertEqual(dict(v.stoi), expected_stoi)
示例9: test_vocab_set_vectors
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_set_vectors(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5,
'test': 4, 'freq_too_low': 2})
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'])
stoi = {"hello": 0, "world": 1, "test": 2}
vectors = torch.FloatTensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]])
dim = 2
v.set_vectors(stoi, vectors, dim)
expected_vectors = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
[0.0, 0.0], [0.1, 0.2], [0.5, 0.6],
[0.3, 0.4]])
assert_allclose(v.vectors.numpy(), expected_vectors)
示例10: test_vocab_download_fasttext_vectors
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_download_fasttext_vectors(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
# Build a vocab and get vectors twice to test caching, then once more
# to test string aliases.
for i in range(3):
if i == 2:
vectors = str("fasttext.simple.300d") # must handle str on Py2
else:
vectors = FastText(language='simple')
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors=vectors)
expected_itos = ['<unk>', '<pad>', '<bos>',
'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T', 'hello', 'world']
expected_stoi = {x: index for index, x in enumerate(expected_itos)}
self.assertEqual(v.itos, expected_itos)
self.assertEqual(dict(v.stoi), expected_stoi)
vectors = v.vectors.numpy()
# The first 5 entries in each vector.
expected_fasttext_simple_en = {
'hello': [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
'world': [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
}
for word in expected_fasttext_simple_en:
assert_allclose(vectors[v.stoi[word], :5],
expected_fasttext_simple_en[word])
assert_allclose(vectors[v.stoi['<unk>']], np.zeros(300))
assert_allclose(vectors[v.stoi['OOV token']], np.zeros(300))
# Delete the vectors after we're done to save disk space on CI
if os.environ.get("TRAVIS") == "true":
vec_file = os.path.join(self.project_root, ".vector_cache", "wiki.simple.vec")
conditional_remove(vec_file)
示例11: test_vocab_extend
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_extend(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
# Build a vocab and get vectors twice to test caching.
for i in range(2):
f = FastText(language='simple')
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors=f)
n_vocab = len(v)
v.extend(f) # extend the vocab with the words contained in f.itos
self.assertGreater(len(v), n_vocab)
self.assertEqual(v.itos[:6], ['<unk>', '<pad>', '<bos>',
'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T', 'hello', 'world'])
vectors = v.vectors.numpy()
# The first 5 entries in each vector.
expected_fasttext_simple_en = {
'hello': [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
'world': [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
}
for word in expected_fasttext_simple_en:
assert_allclose(vectors[v.stoi[word], :5],
expected_fasttext_simple_en[word])
assert_allclose(vectors[v.stoi['<unk>']], np.zeros(300))
# Delete the vectors after we're done to save disk space on CI
if os.environ.get("TRAVIS") == "true":
vec_file = os.path.join(self.project_root, ".vector_cache", "wiki.simple.vec")
conditional_remove(vec_file)
示例12: test_vocab_download_charngram_vectors
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_vocab_download_charngram_vectors(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
# Build a vocab and get vectors twice to test caching, then once more
# to test string aliases.
for i in range(3):
if i == 2:
vectors = "charngram.100d"
else:
vectors = CharNGram()
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors=vectors)
expected_itos = ['<unk>', '<pad>', '<bos>',
'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T', 'hello', 'world']
expected_stoi = {x: index for index, x in enumerate(expected_itos)}
self.assertEqual(v.itos, expected_itos)
self.assertEqual(dict(v.stoi), expected_stoi)
vectors = v.vectors.numpy()
# The first 5 entries in each vector.
expected_charngram = {
'hello': [-0.44782442, -0.08937783, -0.34227219,
-0.16233221, -0.39343098],
'world': [-0.29590717, -0.05275926, -0.37334684, 0.27117205, -0.3868292],
}
for word in expected_charngram:
assert_allclose(vectors[v.stoi[word], :5],
expected_charngram[word])
assert_allclose(vectors[v.stoi['<unk>']], np.zeros(100))
assert_allclose(vectors[v.stoi['OOV token']], np.zeros(100))
# Delete the vectors after we're done to save disk space on CI
if os.environ.get("TRAVIS") == "true":
conditional_remove(
os.path.join(self.project_root, ".vector_cache", "charNgram.txt"))
conditional_remove(
os.path.join(self.project_root, ".vector_cache",
"jmt_pre-trained_embeddings.tar.gz"))
示例13: test_errors
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_errors(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
with self.assertRaises(ValueError):
# Test proper error raised when using unknown string alias
vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors=["fasttext.english.300d"])
vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors="fasttext.english.300d")
with self.assertRaises(ValueError):
# Test proper error is raised when vectors argument is
# non-string or non-Vectors
vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'],
vectors={"word": [1, 2, 3]})
示例14: test_serialization
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def test_serialization(self):
c = Counter({'hello': 4, 'world': 3, 'ᑌᑎIᑕOᗪᕮ_Tᕮ᙭T': 5, 'freq_too_low': 2})
v = vocab.Vocab(c, min_freq=3, specials=['<unk>', '<pad>', '<bos>'])
pickle_path = os.path.join(self.test_dir, "vocab.pkl")
pickle.dump(v, open(pickle_path, "wb"))
v_loaded = pickle.load(open(pickle_path, "rb"))
assert v == v_loaded
示例15: fit
# 需要导入模块: from torchtext import vocab [as 别名]
# 或者: from torchtext.vocab import Vocab [as 别名]
def fit(self, sents, **kwargs):
"""Builds a vocabulary object based on the tokens in the input.
Args:
sents: A list of lists of tokens (representing sentences)
Vocab kwargs include:
max_size
min_freq
specials
unk_init
"""
tokens = list(itertools.chain.from_iterable(sents))
counter = Counter(tokens)
self.vocab = self.build_vocab(counter, **kwargs)