当前位置: 首页>>代码示例>>Python>>正文


Python data.LabelField方法代码示例

本文整理汇总了Python中torchtext.data.LabelField方法的典型用法代码示例。如果您正苦于以下问题:Python data.LabelField方法的具体用法?Python data.LabelField怎么用?Python data.LabelField使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchtext.data的用法示例。


在下文中一共展示了data.LabelField方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_vocab_size

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def test_vocab_size(self):
        # Set up fields
        question_field = data.Field(sequential=True)
        label_field = data.LabelField()

        # Copied from test_build_vocab with minor changes
        # Write TSV dataset and construct a Dataset
        self.write_test_ppid_dataset(data_format="tsv")
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", label_field)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)

        # Skipping json dataset as we can rely on the original build vocab test
        label_field.build_vocab(tsv_dataset)
        assert label_field.vocab.freqs == Counter({'1': 2, '0': 1})
        expected_stoi = {'1': 0, '0': 1}  # No <unk>
        assert dict(label_field.vocab.stoi) == expected_stoi
        # Turn the stoi dictionary into an itos list
        expected_itos = [x[0] for x in sorted(expected_stoi.items(),
                                              key=lambda tup: tup[1])]
        assert label_field.vocab.itos == expected_itos 
开发者ID:pytorch,项目名称:text,代码行数:25,代码来源:test_field.py

示例2: create

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def create(model_config, batch_size, vectors=None):
    """ Create an IMDB dataset """
    path = model_config.data_dir('imdb')

    text_field = data.Field(lower=True, tokenize='spacy', batch_first=True)
    label_field = data.LabelField(is_target=True)

    train_source, test_source = IMDBCached.splits(
        root=path,
        text_field=text_field,
        label_field=label_field
    )

    text_field.build_vocab(train_source, max_size=25_000, vectors=vectors)
    label_field.build_vocab(train_source)

    train_iterator, test_iterator = data.BucketIterator.splits(
        (train_source, test_source),
        batch_size=batch_size,
        device=model_config.torch_device(),
        shuffle=True
    )

    return TextData(
        train_source, test_source, train_iterator, test_iterator, text_field, label_field
    ) 
开发者ID:MillionIntegrals,项目名称:vel,代码行数:28,代码来源:imdb.py

示例3: load_data

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def load_data(batch_size=32):
  # define a tokenizer
  # tokenize = lambda s : nltk.word_tokenize(s)
  tokenize = lambda s : s.split()
  # fields : ( text_field, label_field )
  print(':: creating fields')
  text_field = data.Field(sequential=True, tokenize=tokenize, lower=True, include_lengths=True, batch_first=True, fix_length=200)
  #text_field  = data.Field(sequential=True, tokenize=tokenize, lower=True)
  label_field = data.LabelField(sequential=False)
  # get IMDB data
  print(':: fetching IMDB data')
  train_data, test_data = datasets.IMDB.splits(text_field, label_field) 
  # build vocabulary for fields
  text_field.build_vocab(train_data, vectors=GloVe(name='6B', dim=300))
  label_field.build_vocab(train_data)

  # split train into train and valid
  train_data, valid_data = train_data.split() 

  print(':: labels :', label_field.vocab.stoi)

  # iterators
  train_iter, test_iter, valid_iter = data.BucketIterator.splits( 
                  (train_data, test_data, valid_data), 
                  batch_size=batch_size, 
                  sort_key=lambda x : len(x.text),
                  repeat=False,
                  shuffle=True)

  return  ( (text_field, label_field), (train_iter, test_iter, valid_iter), 
      text_field.vocab.vectors, # GloVe vectors 
      len(text_field.vocab)
        ) 
开发者ID:suriyadeepan,项目名称:torchtest,代码行数:35,代码来源:tc.py

示例4: test_init

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def test_init(self):
        # basic init
        label_field = data.LabelField()
        assert label_field.sequential is False
        assert label_field.unk_token is None

        # init with preset fields
        label_field = data.LabelField(sequential=True, unk_token="<unk>")
        assert label_field.sequential is False
        assert label_field.unk_token is None 
开发者ID:pytorch,项目名称:text,代码行数:12,代码来源:test_field.py

示例5: load_dataset

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def load_dataset(test_sen=None):

    """
    tokenizer : Breaks sentences into a list of words. If sequential=False, no tokenization is applied
    Field : A class that stores information about the way of preprocessing
    fix_length : An important property of TorchText is that we can let the input to be variable length, and TorchText will
                 dynamically pad each sequence to the longest sequence in that "batch". But here we are using fi_length which
                 will pad each sequence to have a fix length of 200.
                 
    build_vocab : It will first make a vocabulary or dictionary mapping all the unique words present in the train_data to an
                  idx and then after it will use GloVe word embedding to map the index to the corresponding word embedding.
                  
    vocab.vectors : This returns a torch tensor of shape (vocab_size x embedding_dim) containing the pre-trained word embeddings.
    BucketIterator : Defines an iterator that batches examples of similar lengths together to minimize the amount of padding needed.
    
    """
    
    tokenize = lambda x: x.split()
    TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, include_lengths=True, batch_first=True, fix_length=200)
    LABEL = data.LabelField(tensor_type=torch.FloatTensor)
    train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
    TEXT.build_vocab(train_data, vectors=GloVe(name='6B', dim=300))
    LABEL.build_vocab(train_data)

    word_embeddings = TEXT.vocab.vectors
    print ("Length of Text Vocabulary: " + str(len(TEXT.vocab)))
    print ("Vector size of Text Vocabulary: ", TEXT.vocab.vectors.size())
    print ("Label Length: " + str(len(LABEL.vocab)))

    train_data, valid_data = train_data.split() # Further splitting of training_data to create new training_data & validation_data
    train_iter, valid_iter, test_iter = data.BucketIterator.splits((train_data, valid_data, test_data), batch_size=32, sort_key=lambda x: len(x.text), repeat=False, shuffle=True)

    '''Alternatively we can also use the default configurations'''
    # train_iter, test_iter = datasets.IMDB.iters(batch_size=32)

    vocab_size = len(TEXT.vocab)

    return TEXT, vocab_size, word_embeddings, train_iter, valid_iter, test_iter 
开发者ID:prakashpandey9,项目名称:Text-Classification-Pytorch,代码行数:40,代码来源:load_data.py

示例6: create_fields

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def create_fields(self, seq_input=True, seq_ner=True, seq_cat=False):
        if self.level == "word":
            sentence_field = data.Field(sequential=seq_input, preprocessing=self.preprocessor, fix_length=self.fix_length,
                                        init_token="<start>", eos_token="<end>")
        elif self.level == "char":
            sentence_field = data.Field(sequential=seq_input, tokenize=self.evil_workaround_tokenizer, fix_length=1014)
            # sentence_field = data.NestedField(nested_field)
        else:
            raise KeyError("Sentence_field is undefined!")

        ner_label_field = data.Field(sequential=seq_ner, init_token="<start>", eos_token="<end>", unk_token=None)
        category_label_field = data.LabelField(sequential=seq_cat)
        return sentence_field, ner_label_field, category_label_field 
开发者ID:hbahadirsahin,项目名称:nlp-experiments-in-pytorch,代码行数:15,代码来源:dataset_reader.py

示例7: __init__

# 需要导入模块: from torchtext import data [as 别名]
# 或者: from torchtext.data import LabelField [as 别名]
def __init__(self, root_dir='data', batch_size=64, use_vector=True):
        self.TEXT = Field(sequential=True, use_vocab=True,
                          tokenize='spacy', lower=True, batch_first=True)
        self.LABEL = LabelField(tensor_type=torch.FloatTensor)
        vectors = Vectors(name='mr_vocab.txt', cache='./')

        dataset_path = os.path.join(root_dir, '{}.tsv')
        self.dataset = {}
        self.dataloader = {}
        for target in ['train', 'dev', 'test']:
            self.dataset[target] = TabularDataset(
                path=dataset_path.format(target),
                format='tsv',
                fields=[('text', self.TEXT), ('label', self.LABEL)]
            )
            if use_vector:
                self.TEXT.build_vocab(self.dataset[target], max_size=25000, vectors=vectors)
            else:
                self.TEXT.build_vocab(self.dataset[target], max_size=25000)

            self.LABEL.build_vocab(self.dataset[target])
            self.dataloader[target] = Iterator(self.dataset[target],
                                               batch_size=batch_size,
                                               device=None,
                                               repeat=False,
                                               sort_key=lambda x: len(x.text),
                                               shuffle=True) 
开发者ID:slaysd,项目名称:pytorch-sentiment-analysis-classification,代码行数:29,代码来源:dataset.py


注:本文中的torchtext.data.LabelField方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。