本文整理汇总了Python中torchfile.load方法的典型用法代码示例。如果您正苦于以下问题:Python torchfile.load方法的具体用法?Python torchfile.load怎么用?Python torchfile.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchfile
的用法示例。
在下文中一共展示了torchfile.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_network_stageI
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_network_stageI(self):
from model import STAGE1_G, STAGE1_D
netG = STAGE1_G()
netG.apply(weights_init)
print(netG)
netD = STAGE1_D()
netD.apply(weights_init)
print(netD)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G, map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict["netG"])
print('Load from: ', cfg.NET_G)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D, map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
# ############# For training stageII GAN #############
示例2: load_weights
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_weights(self, path="pretrained/VGG_FACE.t7"):
""" Function to load luatorch pretrained
Args:
path: path for the luatorch pretrained
"""
model = torchfile.load(path)
counter = 1
block = 1
for i, layer in enumerate(model.modules):
if layer.weight is not None:
if block <= 5:
self_layer = getattr(self, "conv_%d_%d" % (block, counter))
counter += 1
if counter > self.block_size[block - 1]:
counter = 1
block += 1
self_layer.weight.data[...] = torch.tensor(layer.weight).view_as(self_layer.weight)[...]
self_layer.bias.data[...] = torch.tensor(layer.bias).view_as(self_layer.bias)[...]
else:
self_layer = getattr(self, "fc%d" % (block))
block += 1
self_layer.weight.data[...] = torch.tensor(layer.weight).view_as(self_layer.weight)[...]
self_layer.bias.data[...] = torch.tensor(layer.bias).view_as(self_layer.bias)[...]
示例3: load_overfit_data
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_overfit_data(self):
print("Loading data..")
self.train_data = {'X': np.load(self.args.data_dir + "X_train.npy"),
'Y': np.load(self.args.data_dir + "Y_train.npy")}
self.train_data_len = self.train_data['X'].shape[0] - self.train_data['X'].shape[0] % self.args.batch_size
self.num_iterations_training_per_epoch = (
self.train_data_len + self.args.batch_size - 1) // self.args.batch_size
print("Train-shape-x -- " + str(self.train_data['X'].shape))
print("Train-shape-y -- " + str(self.train_data['Y'].shape))
print("Num of iterations in one epoch -- " + str(self.num_iterations_training_per_epoch))
print("Overfitting data is loaded")
print("Loading Validation data..")
self.val_data = self.train_data
self.val_data_len = self.val_data['X'].shape[0] - self.val_data['X'].shape[0] % self.args.batch_size
self.num_iterations_validation_per_epoch = (
self.val_data_len + self.args.batch_size - 1) // self.args.batch_size
print("Val-shape-x -- " + str(self.val_data['X'].shape) + " " + str(self.val_data_len))
print("Val-shape-y -- " + str(self.val_data['Y'].shape))
print("Num of iterations on validation data in one epoch -- " + str(self.num_iterations_validation_per_epoch))
print("Validation data is loaded")
示例4: load_train_data_h5
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_train_data_h5(self):
print("Loading Training data..")
self.train_data = h5py.File(self.args.data_dir + self.args.h5_train_file, 'r')
self.train_data_len = self.args.h5_train_len
self.num_iterations_training_per_epoch = (
self.train_data_len + self.args.batch_size - 1) // self.args.batch_size
print("Train-shape-x -- " + str(self.train_data['X'].shape) + " " + str(self.train_data_len))
print("Train-shape-y -- " + str(self.train_data['Y'].shape))
print("Num of iterations on training data in one epoch -- " + str(self.num_iterations_training_per_epoch))
print("Training data is loaded")
print("Loading Validation data..")
self.val_data = {'X': np.load(self.args.data_dir + "X_val.npy"),
'Y': np.load(self.args.data_dir + "Y_val.npy")}
self.val_data_len = self.val_data['X'].shape[0] - self.val_data['X'].shape[0] % self.args.batch_size
self.num_iterations_validation_per_epoch = (
self.val_data_len + self.args.batch_size - 1) // self.args.batch_size
print("Val-shape-x -- " + str(self.val_data['X'].shape) + " " + str(self.val_data_len))
print("Val-shape-y -- " + str(self.val_data['Y'].shape))
print("Num of iterations on validation data in one epoch -- " + str(self.num_iterations_validation_per_epoch))
print("Validation data is loaded")
示例5: get_st
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def get_st(file):
info = torchfile.load(file)
ids = info['ids']
imids = []
for i,id in enumerate(ids):
imids.append(''.join(chr(i) for i in id))
st_vecs = {}
st_vecs['encs'] = info['encs']
st_vecs['rlens'] = info['rlens']
st_vecs['rbps'] = info['rbps']
st_vecs['ids'] = imids
print(np.shape(st_vecs['encs']),len(st_vecs['rlens']),len(st_vecs['rbps']),len(st_vecs['ids']))
return st_vecs
示例6: get_st
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def get_st(file):
info = torchfile.load(file)
ids = info[b'ids']
imids = []
for i,id in enumerate(ids):
imids.append(''.join(chr(i) for i in id))
st_vecs = {}
st_vecs['encs'] = info['encs']
st_vecs['rlens'] = info['rlens']
st_vecs['rbps'] = info['rbps']
st_vecs['ids'] = imids
print(np.shape(st_vecs['encs']),len(st_vecs['rlens']),len(st_vecs['rbps']),len(st_vecs['ids']))
return st_vecs
# =============================================================================
示例7: _load_dataset
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def _load_dataset(self, img_root, caption_root, classes_filename, word_embedding):
output = []
with open(os.path.join(caption_root, classes_filename)) as f:
lines = f.readlines()
for line in lines:
cls = line.replace('\n', '')
filenames = os.listdir(os.path.join(caption_root, cls))
for filename in filenames:
datum = torchfile.load(os.path.join(caption_root, cls, filename))
raw_desc = datum.char
desc, len_desc = self._get_word_vectors(raw_desc, word_embedding, self.max_word_length)
output.append({
'img': os.path.join(img_root, datum.img),
'desc': desc,
'len_desc': len_desc
})
return output
示例8: load_network_stageI
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_network_stageI(self):
from model import STAGE1_G, STAGE1_D
netG = STAGE1_G()
netG.apply(weights_init)
print(netG)
netD = STAGE1_D()
netD.apply(weights_init)
print(netD)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
# ############# For training stageII GAN #############
示例9: load_network_stageII
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_network_stageII(self):
from model import STAGE1_G, STAGE2_G, STAGE2_D
Stage1_G = STAGE1_G()
netG = STAGE2_G(Stage1_G)
netG.apply(weights_init)
print(netG)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
elif cfg.STAGE1_G != '':
state_dict = \
torch.load(cfg.STAGE1_G,
map_location=lambda storage, loc: storage)
netG.STAGE1_G.load_state_dict(state_dict)
print('Load from: ', cfg.STAGE1_G)
else:
print("Please give the Stage1_G path")
return
netD = STAGE2_D()
netD.apply(weights_init)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
print(netD)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
示例10: main
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('torch_file')
args = parser.parse_args()
torch_file = args.torch_file
data = torchfile.load(torch_file, force_8bytes_long=True)
if data.modules:
process_obj(data)
示例11: load_network_stageII
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load_network_stageII(self):
from model import STAGE1_G, STAGE2_G, STAGE2_D
Stage1_G = STAGE1_G()
netG = STAGE2_G(Stage1_G)
netG.apply(weights_init)
print(netG)
if cfg.NET_G != '':
state_dict = torch.load(cfg.NET_G, map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict["netG"])
print('Load from: ', cfg.NET_G)
elif cfg.STAGE1_G != '':
state_dict = torch.load(cfg.STAGE1_G, map_location=lambda storage, loc: storage)
netG.STAGE1_G.load_state_dict(state_dict["netG"])
print('Load from: ', cfg.STAGE1_G)
else:
print("Please give the Stage1_G path")
return
netD = STAGE2_D()
netD.apply(weights_init)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
print(netD)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
示例12: torch_to_pytorch
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def torch_to_pytorch(model, t7_file, output):
py_layers = []
for layer in list(model.children()):
py_layer_serial(layer, py_layers)
t7_data = torchfile.load(t7_file)
t7_layers = []
for layer in t7_data:
torch_layer_serial(layer, t7_layers)
j = 0
for i, py_layer in enumerate(py_layers):
py_name = type(py_layer).__name__
t7_layer = t7_layers[j]
t7_name = t7_layer[0].split('.')[-1]
if layer_map[t7_name] != py_name:
raise RuntimeError('%s does not match %s' % (py_name, t7_name))
if py_name == 'LSTM':
n_layer = 2 if py_layer.bidirectional else 1
n_layer *= py_layer.num_layers
t7_layer = t7_layers[j:j + n_layer]
j += n_layer
else:
j += 1
load_params(py_layer, t7_layer)
torch.save(model.state_dict(), output)
示例13: load
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load(o, param_list):
""" Get torch7 weights into numpy array """
try:
num = len(o['modules'])
except:
num = 0
for i in xrange(num):
# 2D conv
if o['modules'][i]._typename == 'nn.SpatialConvolution' or \
o['modules'][i]._typename == 'cudnn.SpatialConvolution':
temp = {'weights': o['modules'][i]['weight'].transpose((2,3,1,0)),
'biases': o['modules'][i]['bias']}
param_list.append(temp)
# 2D deconv
elif o['modules'][i]._typename == 'nn.SpatialFullConvolution':
temp = {'weights': o['modules'][i]['weight'].transpose((2,3,1,0)),
'biases': o['modules'][i]['bias']}
param_list.append(temp)
# 3D conv
elif o['modules'][i]._typename == 'nn.VolumetricFullConvolution':
temp = {'weights': o['modules'][i]['weight'].transpose((2,3,4,1,0)),
'biases': o['modules'][i]['bias']}
param_list.append(temp)
# batch norm
elif o['modules'][i]._typename == 'nn.SpatialBatchNormalization' or \
o['modules'][i]._typename == 'nn.VolumetricBatchNormalization':
param_list[-1]['gamma'] = o['modules'][i]['weight']
param_list[-1]['beta'] = o['modules'][i]['bias']
param_list[-1]['mean'] = o['modules'][i]['running_mean']
param_list[-1]['var'] = o['modules'][i]['running_var']
load(o['modules'][i], param_list)
示例14: load
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def load(o, param_list):
try:
num = len(o['modules'])
except:
num = 0
for i in xrange(num):
# 2D conv
if o['modules'][i]._typename == 'nn.SpatialFullConvolution':
temp = {'weights': o['modules'][i]['weight'].transpose((2,3,1,0)),
'biases': o['modules'][i]['bias']}
param_list.append(temp)
# 3D conv
elif o['modules'][i]._typename == 'nn.VolumetricFullConvolution':
temp = {'weights': o['modules'][i]['weight'].transpose((2,3,4,1,0)),
'biases': o['modules'][i]['bias']}
param_list.append(temp)
# batch norm
elif o['modules'][i]._typename == 'nn.SpatialBatchNormalization' or o['modules'][i]._typename == 'nn.VolumetricBatchNormalization':
# temp = {'gamma': o['modules'][i]['weight'],
# 'beta': o['modules'][i]['bias']}
# param_list.append(temp)
param_list[-1]['gamma'] = o['modules'][i]['weight']
param_list[-1]['beta'] = o['modules'][i]['bias']
load(o['modules'][i], param_list)
示例15: init_tfdata
# 需要导入模块: import torchfile [as 别名]
# 或者: from torchfile import load [as 别名]
def init_tfdata(self, batch_size, main_dir, resize_shape, mode='train'):
self.data_session = tf.Session()
print("Creating the iterator for training data")
with tf.device('/cpu:0'):
segdl = SegDataLoader(main_dir, batch_size, (resize_shape[0], resize_shape[1]), resize_shape,
# * 2), resize_shape,
'data/cityscapes_tfdata/train.txt')
iterator = Iterator.from_structure(segdl.data_tr.output_types, segdl.data_tr.output_shapes)
next_batch = iterator.get_next()
self.init_op = iterator.make_initializer(segdl.data_tr)
self.data_session.run(self.init_op)
print("Loading Validation data in memoryfor faster training..")
self.val_data = {'X': np.load(self.args.data_dir + "X_val.npy"),
'Y': np.load(self.args.data_dir + "Y_val.npy")}
# self.crop()
# import cv2
# cv2.imshow('crop1', self.val_data['X'][0,:,:,:])
# cv2.imshow('crop2', self.val_data['X'][1,:,:,:])
# cv2.imshow('seg1', self.val_data['Y'][0,:,:])
# cv2.imshow('seg2', self.val_data['Y'][1,:,:])
# cv2.waitKey()
self.val_data_len = self.val_data['X'].shape[0] - self.val_data['X'].shape[0] % self.args.batch_size
# self.num_iterations_validation_per_epoch = (
# self.val_data_len + self.args.batch_size - 1) // self.args.batch_size
self.num_iterations_validation_per_epoch = self.val_data_len // self.args.batch_size
print("Val-shape-x -- " + str(self.val_data['X'].shape) + " " + str(self.val_data_len))
print("Val-shape-y -- " + str(self.val_data['Y'].shape))
print("Num of iterations on validation data in one epoch -- " + str(self.num_iterations_validation_per_epoch))
print("Validation data is loaded")
return next_batch, segdl.data_len