当前位置: 首页>>代码示例>>Python>>正文


Python utils.add_self_loops方法代码示例

本文整理汇总了Python中torch_geometric.utils.add_self_loops方法的典型用法代码示例。如果您正苦于以下问题:Python utils.add_self_loops方法的具体用法?Python utils.add_self_loops怎么用?Python utils.add_self_loops使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch_geometric.utils的用法示例。


在下文中一共展示了utils.add_self_loops方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __init__(self, in_channels: int, out_channels: int,
                 diag_lambda: float = 0., add_self_loops: bool = True,
                 bias: bool = True, **kwargs):
        super(ClusterGCNConv, self).__init__(aggr='add', **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.diag_lambda = diag_lambda
        self.add_self_loops = add_self_loops

        self.weight = Parameter(torch.Tensor(in_channels, out_channels))
        self.root_weight = Parameter(torch.Tensor(in_channels, out_channels))

        if bias:
            self.bias = Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:21,代码来源:cluster_gcn_conv.py

示例2: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x, edge_index):
        edge_index, _ = remove_self_loops(edge_index)

        deg = degree(edge_index[1 if self.flow == 'source_to_target' else 0],
                     x.size(0), dtype=torch.long)
        deg.clamp_(max=self.max_degree)

        if not self.root_weight:
            edge_index, _ = add_self_loops(edge_index,
                                           num_nodes=x.size(self.node_dim))

        h = self.propagate(edge_index, x=x)

        out = x.new_empty(list(x.size())[:-1] + [self.out_channels])

        for i in deg.unique().tolist():
            idx = (deg == i).nonzero().view(-1)

            r = self.rel_lins[i](h.index_select(self.node_dim, idx))
            if self.root_weight:
                r = r + self.root_lins[i](x.index_select(self.node_dim, idx))

            out.index_copy_(self.node_dim, idx, r)

        return out 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:27,代码来源:mf_conv.py

示例3: __init__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __init__(self, in_channels: int, out_channels: int, heads: int = 1,
                 add_self_loops: bool = True, bias: bool = True, **kwargs):
        super(FeaStConv, self).__init__(aggr='mean', **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.heads = heads
        self.add_self_loops = add_self_loops

        self.weight = Parameter(torch.Tensor(in_channels,
                                             heads * out_channels))
        self.u = Parameter(torch.Tensor(in_channels, heads))
        self.c = Parameter(torch.Tensor(heads))

        if bias:
            self.bias = Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:22,代码来源:feast_conv.py

示例4: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor:
        """"""
        if isinstance(x, Tensor):
            x: PairTensor = (x, x)

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index,
                                               num_nodes=x[1].size(0))
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: PairTensor)
        out = self.propagate(edge_index, x=x, size=None)

        if self.bias is not None:
            out += self.bias

        return out 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:22,代码来源:feast_conv.py

示例5: __norm__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __norm__(self, edge_index, num_nodes: Optional[int],
                 edge_weight: OptTensor, normalization: Optional[str],
                 lambda_max, dtype: Optional[int] = None,
                 batch: OptTensor = None):

        edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)

        edge_index, edge_weight = get_laplacian(edge_index, edge_weight,
                                                normalization, dtype,
                                                num_nodes)

        if batch is not None and lambda_max.numel() > 1:
            lambda_max = lambda_max[batch[edge_index[0]]]

        edge_weight = (2.0 * edge_weight) / lambda_max
        edge_weight.masked_fill_(edge_weight == float('inf'), 0)

        edge_index, edge_weight = add_self_loops(edge_index, edge_weight,
                                                 fill_value=-1.,
                                                 num_nodes=num_nodes)
        assert edge_weight is not None

        return edge_index, edge_weight 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:25,代码来源:cheb_conv.py

示例6: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x, edge_index, edge_weight=None, size=None):
        """"""
        num_nodes = x.shape[0]
        h = torch.matmul(x, self.weight)

        if edge_weight is None:
            edge_weight = torch.ones((edge_index.size(1), ),
                                     dtype=x.dtype,
                                     device=edge_index.device)
        edge_index, edge_weight = remove_self_loops(edge_index=edge_index, edge_attr=edge_weight)
        deg = scatter_add(edge_weight, edge_index[0], dim=0, dim_size=num_nodes) #+ 1e-10

        h_j = edge_weight.view(-1, 1) * h[edge_index[1]]
        aggr_out = scatter_add(h_j, edge_index[0], dim=0, dim_size=num_nodes)
        out = ( deg.view(-1, 1) * self.lin1(x) + aggr_out) + self.lin2(x)
        edge_index, edge_weight = add_self_loops(edge_index=edge_index, edge_weight=edge_weight, num_nodes=num_nodes)
        return out 
开发者ID:malllabiisc,项目名称:ASAP,代码行数:19,代码来源:le_conv.py

示例7: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x_1, x_2, edge_index_pos, edge_index_neg):
        """
        Forward propagation pass with features an indices.
        :param x_1: Features for left hand side vertices.
        :param x_2: Features for right hand side vertices.
        :param edge_index_pos: Positive indices.
        :param edge_index_neg: Negative indices.
        :return out: Abstract convolved features.
        """
        edge_index_pos, _ = remove_self_loops(edge_index_pos, None)
        edge_index_pos, _ = add_self_loops(edge_index_pos, num_nodes=x_1.size(0))
        edge_index_neg, _ = remove_self_loops(edge_index_neg, None)
        edge_index_neg, _ = add_self_loops(edge_index_neg, num_nodes=x_2.size(0))

        row_pos, col_pos = edge_index_pos
        row_neg, col_neg = edge_index_neg

        if self.norm:
            out_1 = scatter_mean(x_1[col_pos], row_pos, dim=0, dim_size=x_1.size(0))
            out_2 = scatter_mean(x_2[col_neg], row_neg, dim=0, dim_size=x_2.size(0))
        else:
            out_1 = scatter_add(x_1[col_pos], row_pos, dim=0, dim_size=x_1.size(0))
            out_2 = scatter_add(x_2[col_neg], row_neg, dim=0, dim_size=x_2.size(0))

        out = torch.cat((out_1, out_2, x_1), 1)
        out = torch.matmul(out, self.weight)
        if self.bias is not None:
            out = out + self.bias

        if self.norm_embed:
            out = F.normalize(out, p=2, dim=-1)
        return out 
开发者ID:benedekrozemberczki,项目名称:SGCN,代码行数:34,代码来源:signedsageconvolution.py

示例8: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3-5: Start propagating messages.
        return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x) 
开发者ID:diningphil,项目名称:gnn-comparison,代码行数:14,代码来源:DGCNN.py

示例9: __call__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __call__(self, data):
        N = data.num_nodes
        edge_index = data.edge_index
        if data.edge_attr is None:
            edge_weight = torch.ones(edge_index.size(1),
                                     device=edge_index.device)
        else:
            edge_weight = data.edge_attr
            assert self.exact
            assert edge_weight.dim() == 1

        if self.self_loop_weight:
            edge_index, edge_weight = add_self_loops(
                edge_index, edge_weight, fill_value=self.self_loop_weight,
                num_nodes=N)

        edge_index, edge_weight = coalesce(edge_index, edge_weight, N, N)

        if self.exact:
            edge_index, edge_weight = self.transition_matrix(
                edge_index, edge_weight, N, self.normalization_in)
            diff_mat = self.diffusion_matrix_exact(edge_index, edge_weight, N,
                                                   **self.diffusion_kwargs)
            edge_index, edge_weight = self.sparsify_dense(
                diff_mat, **self.sparsification_kwargs)
        else:
            edge_index, edge_weight = self.diffusion_matrix_approx(
                edge_index, edge_weight, N, self.normalization_in,
                **self.diffusion_kwargs)
            edge_index, edge_weight = self.sparsify_sparse(
                edge_index, edge_weight, N, **self.sparsification_kwargs)

        edge_index, edge_weight = coalesce(edge_index, edge_weight, N, N)
        edge_index, edge_weight = self.transition_matrix(
            edge_index, edge_weight, N, self.normalization_out)

        data.edge_index = edge_index
        data.edge_attr = edge_weight

        return data 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:42,代码来源:gdc.py

示例10: __call__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __call__(self, data):
        N = data.num_nodes
        edge_index = data.edge_index
        assert data.edge_attr is None

        edge_index, _ = add_self_loops(edge_index, num_nodes=N)
        edge_index, _ = coalesce(edge_index, None, N, N)
        data.edge_index = edge_index
        return data 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:11,代码来源:add_self_loops.py

示例11: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x: Tensor, edge_index: Adj, size: Size = None) -> Tensor:
        """"""
        edge_weight: OptTensor = None
        if isinstance(edge_index, Tensor):
            num_nodes = size[1] if size is not None else x.size(self.node_dim)
            if self.add_self_loops:
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)

            row, col = edge_index[0], edge_index[1]
            deg_inv = 1. / degree(col, num_nodes=num_nodes).clamp_(1.)

            edge_weight = deg_inv[col]
            edge_weight[row == col] += self.diag_lambda * deg_inv

        elif isinstance(edge_index, SparseTensor):
            if self.add_self_loops:
                edge_index = set_diag(edge_index)

            col, row, _ = edge_index.coo()  # Transposed.
            deg_inv = 1. / sum(edge_index, dim=1).clamp_(1.)

            edge_weight = deg_inv[col]
            edge_weight[row == col] += self.diag_lambda * deg_inv
            edge_index = edge_index.set_value(edge_weight, layout='coo')

        # propagate_type: (x: Tensor, edge_weight: OptTensor)
        out = self.propagate(edge_index, x=x, edge_weight=edge_weight,
                             size=None)
        out = out @ self.weight + x @ self.root_weight

        if self.bias is not None:
            out += self.bias

        return out 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:37,代码来源:cluster_gcn_conv.py

示例12: __init__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __init__(self, local_nn: Optional[Callable] = None,
                 global_nn: Optional[Callable] = None,
                 add_self_loops: bool = True, **kwargs):
        super(PointConv, self).__init__(aggr='max', **kwargs)

        self.local_nn = local_nn
        self.global_nn = global_nn
        self.add_self_loops = add_self_loops

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:12,代码来源:point_conv.py

示例13: __init__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __init__(self, in_channels: Union[int, Tuple[int, int]],
                 out_channels: int, heads: int = 1, concat: bool = True,
                 negative_slope: float = 0.2, dropout: float = 0.,
                 add_self_loops: bool = True, bias: bool = True, **kwargs):
        super(GATConv, self).__init__(aggr='add', node_dim=0, **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.heads = heads
        self.concat = concat
        self.negative_slope = negative_slope
        self.dropout = dropout
        self.add_self_loops = add_self_loops

        if isinstance(in_channels, int):
            self.lin_l = Linear(in_channels, heads * out_channels, bias=False)
            self.lin_r = self.lin_l
        else:
            self.lin_l = Linear(in_channels[0], heads * out_channels, False)
            self.lin_r = Linear(in_channels[1], heads * out_channels, False)

        self.att_l = Parameter(torch.Tensor(1, heads, out_channels))
        self.att_r = Parameter(torch.Tensor(1, heads, out_channels))

        if bias and concat:
            self.bias = Parameter(torch.Tensor(heads * out_channels))
        elif bias and not concat:
            self.bias = Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)

        self._alpha = None

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:36,代码来源:gat_conv.py

示例14: forward

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def forward(self, x: Tensor, edge_index: Adj) -> Tensor:
        """"""
        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index,
                                               num_nodes=x.size(self.node_dim))
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        x_norm = F.normalize(x, p=2., dim=-1)

        # propagate_type: (x: Tensor, x_norm: Tensor)
        return self.propagate(edge_index, x=x, x_norm=x_norm, size=None) 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:16,代码来源:agnn_conv.py

示例15: __init__

# 需要导入模块: from torch_geometric import utils [as 别名]
# 或者: from torch_geometric.utils import add_self_loops [as 别名]
def __init__(self, local_nn: Optional[Callable] = None,
                 global_nn: Optional[Callable] = None,
                 add_self_loops: bool = True, **kwargs):
        super(PPFConv, self).__init__(aggr='max', **kwargs)

        self.local_nn = local_nn
        self.global_nn = global_nn
        self.add_self_loops = add_self_loops

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:12,代码来源:ppf_conv.py


注:本文中的torch_geometric.utils.add_self_loops方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。