当前位置: 首页>>代码示例>>Python>>正文


Python tensorboard.SummaryWriter方法代码示例

本文整理汇总了Python中torch.utils.tensorboard.SummaryWriter方法的典型用法代码示例。如果您正苦于以下问题:Python tensorboard.SummaryWriter方法的具体用法?Python tensorboard.SummaryWriter怎么用?Python tensorboard.SummaryWriter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.utils.tensorboard的用法示例。


在下文中一共展示了tensorboard.SummaryWriter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def __init__(self, log_dir, use_tb=True, config='rl'):
        self._log_dir = log_dir
        if use_tb:
            tb_dir = os.path.join(log_dir, 'tb')
            if os.path.exists(tb_dir):
                shutil.rmtree(tb_dir)
            self._sw = SummaryWriter(tb_dir)
        else:
            self._sw = None
        self._train_mg = MetersGroup(
            os.path.join(log_dir, 'train.log'),
            formating=FORMAT_CONFIG[config]['train']
        )
        self._eval_mg = MetersGroup(
            os.path.join(log_dir, 'eval.log'),
            formating=FORMAT_CONFIG[config]['eval']
        ) 
开发者ID:denisyarats,项目名称:pytorch_sac_ae,代码行数:19,代码来源:logger.py

示例2: __init__

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def __init__(self, log_dir):
        try:
            from torch.utils.tensorboard import SummaryWriter
        except ImportError:
            try:
                from tensorboardX import SummaryWriter
            except ImportError:
                raise RuntimeError("This contrib module requires tensorboardX to be installed. "
                                   "Please install it with command: \n pip install tensorboardX")

        try:
            self.writer = SummaryWriter(log_dir)
        except TypeError as err:
            if "type object got multiple values for keyword argument 'logdir'" == str(err):
                self.writer = SummaryWriter(log_dir=log_dir)
                warnings.warn('tensorboardX version < 1.7 will not be supported '
                              'after ignite 0.3.0; please upgrade',
                              DeprecationWarning)
            else:
                raise err 
开发者ID:budui,项目名称:Human-Pose-Transfer,代码行数:22,代码来源:tensorboard_logger.py

示例3: add_tensorboard_handler

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def add_tensorboard_handler(tensorboard_folder, engine, every_iteration=False):
    """
    Every key in engine.state.epoch_history[-1] is logged to TensorBoard.
    
    Args:
        tensorboard_folder (str): Where the tensorboard logs should go.
        trainer (ignite.Engine): The engine to log.
        every_iteration (bool, optional): Whether to also log the values at every 
          iteration.
    """

    @engine.on(ValidationEvents.VALIDATION_COMPLETED)
    def log_to_tensorboard(engine):
        writer = SummaryWriter(tensorboard_folder)
        for key in engine.state.epoch_history:
            writer.add_scalar(
                key, engine.state.epoch_history[key][-1], engine.state.epoch)

    if every_iteration:
        @engine.on(Events.ITERATION_COMPLETED)
        def log_iteration_to_tensorboard(engine):
            writer = SummaryWriter(tensorboard_folder)
            for key in engine.state.iter_history:
                writer.add_scalar(
                    key, engine.state.iter_history[key][-1], engine.state.iteration) 
开发者ID:nussl,项目名称:nussl,代码行数:27,代码来源:trainer.py

示例4: before_run

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def before_run(self, runner):
        if TORCH_VERSION < '1.1' or TORCH_VERSION == 'parrots':
            try:
                from tensorboardX import SummaryWriter
            except ImportError:
                raise ImportError('Please install tensorboardX to use '
                                  'TensorboardLoggerHook.')
        else:
            try:
                from torch.utils.tensorboard import SummaryWriter
            except ImportError:
                raise ImportError(
                    'Please run "pip install future tensorboard" to install '
                    'the dependencies to use torch.utils.tensorboard '
                    '(applicable to PyTorch 1.1 or higher)')

        if self.log_dir is None:
            self.log_dir = osp.join(runner.work_dir, 'tf_logs')
        self.writer = SummaryWriter(self.log_dir) 
开发者ID:open-mmlab,项目名称:mmcv,代码行数:21,代码来源:tensorboard.py

示例5: graph

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def graph(self, model: Union[torch.nn.Module, torch.nn.DataParallel, Model], name: str, use_gpu: bool,
              *input_shape):
        if isinstance(model, torch.nn.Module):
            proto_model: torch.nn.Module = model
            num_params: int = self._count_params(proto_model)
        elif isinstance(model, torch.nn.DataParallel):
            proto_model: torch.nn.Module = model.module
            num_params: int = self._count_params(proto_model)
        elif isinstance(model, Model):
            proto_model: torch.nn.Module = model.model
            num_params: int = model.num_params
        else:
            raise TypeError("Only `nn.Module`, `nn.DataParallel` and `Model` can be passed!")
        model_logdir = os.path.join(self.logdir, name)
        self._build_dir(model_logdir)
        writer_for_model = SummaryWriter(log_dir=model_logdir)

        input_list = tuple(torch.ones(shape).cuda() if use_gpu else torch.ones(shape) for shape in input_shape)
        self.scalars({'ParamsNum': num_params}, 0, tag="ParamsNum")
        self.scalars({'ParamsNum': num_params}, 1, tag="ParamsNum")
        proto_model(*input_list)
        writer_for_model.add_graph(proto_model, input_list)
        writer_for_model.close() 
开发者ID:dingguanglei,项目名称:jdit,代码行数:25,代码来源:super.py

示例6: __init__

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.use_tf = True
        # Base dir is often the dir created to save the model into
        base_dir = kwargs.get('base_dir', '.')
        log_dir = os.path.expanduser(kwargs.get('log_dir', 'runs'))
        if not os.path.isabs(log_dir):
            log_dir = os.path.join(base_dir, log_dir)
        # Run dir is the name of an individual run
        run_dir = kwargs.get('run_dir')
        pid = str(os.getpid())
        run_dir = '{}-{}'.format(run_dir, pid) if run_dir is not None else pid
        log_dir = os.path.join(log_dir, run_dir)

        try:
            from torch.utils.tensorboard import SummaryWriter
            self._log = SummaryWriter(log_dir)
            self.use_tf = False
        except:
            import tensorflow as tf
            file_writer = tf.summary.create_file_writer(log_dir)
            file_writer.set_as_default()
            self._log_scalar = tf.summary.scalar 
开发者ID:dpressel,项目名称:mead-baseline,代码行数:25,代码来源:reporting.py

示例7: test_tensorboard_add_scalar

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def test_tensorboard_add_scalar(tmp_path: Path):
    reporter = Reporter()
    reporter.set_epoch(1)
    key1 = uuid.uuid4().hex
    with reporter.observe(key1) as sub:
        stats1 = {"aa": 0.6}
        sub.register(stats1)

    reporter.set_epoch(1)
    with reporter.observe(key1) as sub:
        # Skip epoch=2
        sub.register({})

    reporter.set_epoch(3)
    with reporter.observe(key1) as sub:
        stats1 = {"aa": 0.6}
        sub.register(stats1)

    if LooseVersion(torch.__version__) >= LooseVersion("1.1.0"):
        from torch.utils.tensorboard import SummaryWriter
    else:
        from tensorboardX import SummaryWriter
    writer = SummaryWriter(tmp_path)
    reporter.tensorboard_add_scalar(writer) 
开发者ID:espnet,项目名称:espnet,代码行数:26,代码来源:test_reporter.py

示例8: __init__

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def __init__(self, writer_kwargs=None,
                 abort_event: Event = None, queue: Queue = None):
        """

        Parameters
        ----------
        writer_kwargs : dict
            arguments to initialize a writer
        abort_event : :class:`threading.Event`
            the abortion event
        queue : :class:`queue.Queue`
            the queue holding all logging tasks
        """

        if writer_kwargs is None:
            writer_kwargs = {}

        if "logdir" in writer_kwargs:
            writer_kwargs[LOGDIR_KWARG] = writer_kwargs.pop("logdir")
        elif "log_dir" in writer_kwargs:
            writer_kwargs[LOGDIR_KWARG] = writer_kwargs.pop("log_dir")

        super().__init__(SummaryWriter, writer_kwargs,
                         abort_event, queue) 
开发者ID:delira-dev,项目名称:delira,代码行数:26,代码来源:tensorboard_backend.py

示例9: experiment

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def experiment(self) -> SummaryWriter:
        r"""
        Actual tensorboard object. To use TensorBoard features in your
        :class:`~pytorch_lightning.core.lightning.LightningModule` do the following.

        Example::

            self.logger.experiment.some_tensorboard_function()

        """
        if self._experiment is not None:
            return self._experiment

        assert rank_zero_only.rank == 0, 'tried to init log dirs in non global_rank=0'
        os.makedirs(self.root_dir, exist_ok=True)
        self._experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs)
        return self._experiment 
开发者ID:PyTorchLightning,项目名称:pytorch-lightning,代码行数:19,代码来源:tensorboard.py

示例10: test_writing_stack

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def test_writing_stack(self):
        with TemporaryDirectory() as tmp_dir1, TemporaryDirectory() as tmp_dir2:
            writer1 = SummaryWriter(tmp_dir1)
            writer1.add_scalar = MagicMock()
            writer2 = SummaryWriter(tmp_dir2)
            writer2.add_scalar = MagicMock()
            with summary_writer_context(writer1):
                with summary_writer_context(writer2):
                    SummaryWriterContext.add_scalar("test2", torch.ones(1))
                SummaryWriterContext.add_scalar("test1", torch.zeros(1))
            writer1.add_scalar.assert_called_once_with(
                "test1", torch.zeros(1), global_step=0
            )
            writer2.add_scalar.assert_called_once_with(
                "test2", torch.ones(1), global_step=0
            ) 
开发者ID:facebookresearch,项目名称:ReAgent,代码行数:18,代码来源:test_tensorboardX.py

示例11: write_to_tensorboard

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def write_to_tensorboard(
        self, writer: SummaryWriter, prefix="train", global_step=None
    ):
        for meter in self.meters:
            avg = meter.avg
            val = meter.val
            if meter.write_val:
                writer.add_scalar(
                    f"{prefix}/{meter.name}_val", val, global_step=global_step
                )

            if meter.write_avg:
                writer.add_scalar(
                    f"{prefix}/{meter.name}_avg", avg, global_step=global_step
                ) 
开发者ID:allenai,项目名称:hidden-networks,代码行数:17,代码来源:logging.py

示例12: __init__

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def __init__(self) -> None:
        """Initialize TensorBoardWriter."""
        super().__init__()

        # Set up tensorboard summary writer
        self.writer = SummaryWriter(Meta.log_path) 
开发者ID:SenWu,项目名称:emmental,代码行数:8,代码来源:tensorboard_writer.py

示例13: plot_model

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def plot_model(
    model: ClassyModel,
    size: Tuple[int, ...] = (3, 224, 224),
    input_key: Optional[Union[str, List[str]]] = None,
    writer: Optional["SummaryWriter"] = None,
    folder: str = "",
    train: bool = True,
) -> None:
    """Visualizes a model in TensorBoard.

    The TensorBoard writer can be either specified directly via `writer` or can
    be specified via a `folder`.

    The model can be run in training or evaluation model via the `train` argument.

    Example usage on devserver:
     - Install TensorBoard using: `sudo feature install tensorboard`
     - Start TensorBoard using: `tensorboard --port=8098 --logdir <folder>`
    """

    assert (
        writer is not None or folder != ""
    ), "must specify SummaryWriter or folder to create SummaryWriter in"
    input = get_model_dummy_input(model, size, input_key)
    if writer is None:
        writer = SummaryWriter(log_dir=folder, comment="Model graph")
    with writer:
        orig_train = model.training
        model.train(train)  # visualize model in desired mode
        writer.add_graph(model, input_to_model=(input,))
        model.train(orig_train)


# function that produces an image map: 
开发者ID:facebookresearch,项目名称:ClassyVision,代码行数:36,代码来源:visualize.py

示例14: test_constructors

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def test_constructors(self) -> None:
        """
        Test that the hooks are constructed correctly.
        """
        config = {"summary_writer": {}, "log_period": 5}
        invalid_config = copy.deepcopy(config)
        invalid_config["log_period"] = "this is not an int"

        self.constructor_test_helper(
            config=config,
            hook_type=TensorboardPlotHook,
            hook_registry_name="tensorboard_plot",
            hook_kwargs={"tb_writer": SummaryWriter(), "log_period": 5},
            invalid_configs=[invalid_config],
        ) 
开发者ID:facebookresearch,项目名称:ClassyVision,代码行数:17,代码来源:hooks_tensorboard_plot_hook_test.py

示例15: test_constructors

# 需要导入模块: from torch.utils import tensorboard [as 别名]
# 或者: from torch.utils.tensorboard import SummaryWriter [as 别名]
def test_constructors(self) -> None:
        """
        Test that the hooks are constructed correctly.
        """
        config = {"summary_writer": {}}

        self.constructor_test_helper(
            config=config,
            hook_type=ModelTensorboardHook,
            hook_registry_name="model_tensorboard",
            hook_kwargs={"tb_writer": SummaryWriter()},
        ) 
开发者ID:facebookresearch,项目名称:ClassyVision,代码行数:14,代码来源:hooks_model_tensorboard_hook_test.py


注:本文中的torch.utils.tensorboard.SummaryWriter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。