本文整理汇总了Python中torch.utils.model_zoo.load_url方法的典型用法代码示例。如果您正苦于以下问题:Python model_zoo.load_url方法的具体用法?Python model_zoo.load_url怎么用?Python model_zoo.load_url使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.utils.model_zoo
的用法示例。
在下文中一共展示了model_zoo.load_url方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def __init__(self):
super(Model2, self).__init__()
# fine tuning the ResNet helped significantly with the accuracy
base_model = MyResNet(BasicBlock, [2, 2, 2, 2])
base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
# code needed to deactivate fine tuning of resnet
#for param in base_model.parameters():
# param.requires_grad = False
self.base_model = base_model
self.drop0 = nn.Dropout2d(0.05)
self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(256)
self.drop1 = nn.Dropout2d(0.05)
self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.drop2 = nn.Dropout2d(0.05)
self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
示例2: __init__
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def __init__(self, base_model: torch.nn.Module, num_classes: int, weights_url: str = None):
super().__init__()
if not hasattr(self, 'decoder_block'):
self.decoder_block = UnetDecoderBlock
if not hasattr(self, 'bottleneck_type'):
self.bottleneck_type = ConvBottleneck
if weights_url is not None:
print("Model weights inited by url")
pretrained_weights = model_zoo.load_url(weights_url)
model_state_dict = base_model.state_dict()
pretrained_weights = {k: v for k, v in pretrained_weights.items() if k in model_state_dict}
base_model.load_state_dict(pretrained_weights)
filters = [64, 64, 128, 256, 512]
self.bottlenecks = nn.ModuleList([self.bottleneck_type(f * 2, f) for f in reversed(filters[:-1])])
self.decoder_stages = nn.ModuleList([self.get_decoder(filters, idx) for idx in range(1, len(filters))])
self.encoder_stages = nn.ModuleList([self.get_encoder(base_model, idx) for idx in range(len(filters))])
self.last_upsample = self.decoder_block(filters[0], filters[0])
self.final = self.make_final_classifier(filters[0], num_classes)
示例3: densenet121
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def densenet121(pretrained=False, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet121'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
示例4: densenet169
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def densenet169(pretrained=False, **kwargs):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet169'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
示例5: densenet201
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def densenet201(pretrained=False, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet201'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
示例6: densenet161
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def densenet161(pretrained=False, **kwargs):
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet161'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
示例7: resnet18
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet18(pretrained=False):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:11,代码来源:resnet_v1.py
示例8: resnet34
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet34(pretrained=False):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:11,代码来源:resnet_v1.py
示例9: resnet50
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet50(pretrained=False):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:11,代码来源:resnet_v1.py
示例10: resnet101
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet101(pretrained=False):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:11,代码来源:resnet_v1.py
示例11: resnet152
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet152(pretrained=False):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:11,代码来源:resnet_v1.py
示例12: _load_pretrained_model
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
示例13: resnet18
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
示例14: resnet34
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
示例15: resnet50
# 需要导入模块: from torch.utils import model_zoo [as 别名]
# 或者: from torch.utils.model_zoo import load_url [as 别名]
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model