当前位置: 首页>>代码示例>>Python>>正文


Python data.items方法代码示例

本文整理汇总了Python中torch.utils.data.items方法的典型用法代码示例。如果您正苦于以下问题:Python data.items方法的具体用法?Python data.items怎么用?Python data.items使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.utils.data的用法示例。


在下文中一共展示了data.items方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_object_labels

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def read_object_labels(root, dataset, set):
    path_labels = os.path.join(root, 'VOCdevkit', dataset, 'ImageSets', 'Main')
    labeled_data = dict()
    num_classes = len(object_categories)

    for i in range(num_classes):
        file = os.path.join(path_labels, object_categories[i] + '_' + set + '.txt')
        data = read_image_label(file)

        if i == 0:
            for (name, label) in data.items():
                labels = np.zeros(num_classes)
                labels[i] = label
                labeled_data[name] = labels
        else:
            for (name, label) in data.items():
                labeled_data[name][i] = label

    return labeled_data 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:21,代码来源:voc.py

示例2: write_object_labels_csv

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def write_object_labels_csv(file, labeled_data):
    # write a csv file
    print('[dataset] write file %s' % file)
    with open(file, 'w') as csvfile:
        fieldnames = ['name']
        fieldnames.extend(object_categories)
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

        writer.writeheader()
        for (name, labels) in labeled_data.items():
            example = {'name': name}
            for i in range(20):
                example[fieldnames[i + 1]] = int(labels[i])
            writer.writerow(example)

    csvfile.close() 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:18,代码来源:voc.py

示例3: load_next_buffer

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def load_next_buffer(self):
        """ Loads next buffer """
        self._buffer_fnames = self._files[self._buffer_index:self._buffer_index + self._buffer_size]
        self._buffer_index += self._buffer_size
        self._buffer_index = self._buffer_index % len(self._files)
        self._buffer = []
        self._cum_size = [0]

        # progress bar
        pbar = tqdm(total=len(self._buffer_fnames),
                    bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} {postfix}')
        pbar.set_description("Loading file buffer ...")

        for f in self._buffer_fnames:
            with np.load(f) as data:
                self._buffer += [{k: np.copy(v) for k, v in data.items()}]
                self._cum_size += [self._cum_size[-1] +
                                   self._data_per_sequence(data['rewards'].shape[0])]
            pbar.update(1)
        pbar.close() 
开发者ID:ctallec,项目名称:world-models,代码行数:22,代码来源:loaders.py

示例4: _apply_to_data

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def _apply_to_data(data, func, unpack_dict=False):
    """Apply a function to data, trying to unpack different data
    types.

    """
    apply_ = partial(_apply_to_data, func=func, unpack_dict=unpack_dict)

    if isinstance(data, dict):
        if unpack_dict:
            return [apply_(v) for v in data.values()]
        return {k: apply_(v) for k, v in data.items()}

    if isinstance(data, (list, tuple)):
        try:
            # e.g.list/tuple of arrays
            return [apply_(x) for x in data]
        except TypeError:
            return func(data)

    return func(data) 
开发者ID:skorch-dev,项目名称:skorch,代码行数:22,代码来源:dataset.py

示例5: unpack_data

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def unpack_data(data):
    """Unpack data returned by the net's iterator into a 2-tuple.

    If the wrong number of items is returned, raise a helpful error
    message.

    """
    # Note: This function cannot detect it when a user only returns 1
    # item that is exactly of length 2 (e.g. because the batch size is
    # 2). In that case, the item will be erroneously split into X and
    # y.
    try:
        X, y = data
        return X, y
    except ValueError:
        # if a 1-tuple/list or something else like a torch tensor
        if not isinstance(data, (tuple, list)) or len(data) < 2:
            raise ValueError(ERROR_MSG_1_ITEM)
        raise ValueError(ERROR_MSG_MORE_THAN_2_ITEMS.format(len(data))) 
开发者ID:skorch-dev,项目名称:skorch,代码行数:21,代码来源:dataset.py

示例6: state_dict

# 需要导入模块: from torch.utils import data [as 别名]
# 或者: from torch.utils.data import items [as 别名]
def state_dict(self):
        def get_prefetch_num(split):
            if self.loaders[split].num_workers > 0:
                return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size
            else:
                return 0
        return {split: loader.sampler.state_dict(get_prefetch_num(split)) \
                    for split, loader in self.loaders.items()} 
开发者ID:ruotianluo,项目名称:self-critical.pytorch,代码行数:10,代码来源:dataloader.py


注:本文中的torch.utils.data.items方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。