当前位置: 首页>>代码示例>>Python>>正文


Python dataset.Subset方法代码示例

本文整理汇总了Python中torch.utils.data.dataset.Subset方法的典型用法代码示例。如果您正苦于以下问题:Python dataset.Subset方法的具体用法?Python dataset.Subset怎么用?Python dataset.Subset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.utils.data.dataset的用法示例。


在下文中一共展示了dataset.Subset方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_inference_dataloader

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def get_inference_dataloader(
    root_path: str,
    mode: str,
    transforms: Callable,
    batch_size: int = 16,
    num_workers: int = 8,
    pin_memory: bool = True,
    limit_num_samples: Optional[int] = None,
) -> DataLoader:
    assert mode in ("train", "test"), "Mode should be 'train' or 'test'"

    get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset

    dataset = get_dataset_fn(root_path, return_meta=True)

    if limit_num_samples is not None:
        indices = np.random.permutation(len(dataset))[:limit_num_samples]
        dataset = Subset(dataset, indices)

    dataset = TransformedDataset(dataset, transform_fn=transforms)

    loader = DataLoader(
        dataset, shuffle=False, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory, drop_last=False
    )
    return loader 
开发者ID:pytorch,项目名称:ignite,代码行数:27,代码来源:dataloaders.py

示例2: data_from_dataset

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def data_from_dataset(dataset, X_indexing=None, y_indexing=None):
    """Try to access X and y attribute from dataset.

    Also works when dataset is a subset.

    Parameters
    ----------
    dataset : skorch.dataset.Dataset or torch.utils.data.Subset
      The incoming dataset should be a ``skorch.dataset.Dataset`` or a
      ``torch.utils.data.Subset`` of a
      ``skorch.dataset.Dataset``.

    X_indexing : function/callable or None (default=None)
      If not None, use this function for indexing into the X data. If
      None, try to automatically determine how to index data.

    y_indexing : function/callable or None (default=None)
      If not None, use this function for indexing into the y data. If
      None, try to automatically determine how to index data.

    """
    X, y = _none, _none

    if isinstance(dataset, Subset):
        X, y = data_from_dataset(
            dataset.dataset, X_indexing=X_indexing, y_indexing=y_indexing)
        X = multi_indexing(X, dataset.indices, indexing=X_indexing)
        y = multi_indexing(y, dataset.indices, indexing=y_indexing)
    elif hasattr(dataset, 'X') and hasattr(dataset, 'y'):
        X, y = dataset.X, dataset.y

    if (X is _none) or (y is _none):
        raise AttributeError("Could not access X and y from dataset.")
    return X, y 
开发者ID:skorch-dev,项目名称:skorch,代码行数:36,代码来源:utils.py

示例3: is_skorch_dataset

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def is_skorch_dataset(ds):
    """Checks if the supplied dataset is an instance of
    ``skorch.dataset.Dataset`` even when it is nested inside
    ``torch.util.data.Subset``."""
    from skorch.dataset import Dataset
    if isinstance(ds, Subset):
        return is_skorch_dataset(ds.dataset)
    return isinstance(ds, Dataset)


# pylint: disable=unused-argument 
开发者ID:skorch-dev,项目名称:skorch,代码行数:13,代码来源:utils.py

示例4: subset

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def subset(self, skorch_ds):
        from torch.utils.data.dataset import Subset
        return Subset(skorch_ds, [1, 3]) 
开发者ID:skorch-dev,项目名称:skorch,代码行数:5,代码来源:test_utils.py

示例5: subset_subset

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def subset_subset(self, subset):
        from torch.utils.data.dataset import Subset
        return Subset(subset, [0])

    # pylint: disable=missing-docstring 
开发者ID:skorch-dev,项目名称:skorch,代码行数:7,代码来源:test_utils.py

示例6: fit

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def fit(self, pipeline_config, hyperparameter_config, X, Y, train_indices, valid_indices):
    
        torch.manual_seed(pipeline_config["random_seed"])
        hyperparameter_config = ConfigWrapper(self.get_name(), hyperparameter_config)

        # prepare data
        drop_last = hyperparameter_config['batch_size'] < train_indices.shape[0]
        X, Y = to_dense(X), to_dense(Y)
        X, Y = torch.from_numpy(X).float(), torch.from_numpy(Y)

        train_dataset = TensorDataset(X, Y)
        train_loader = DataLoader(
            dataset=train_dataset,
            batch_size=hyperparameter_config['batch_size'], 
            sampler=SubsetRandomSampler(train_indices),
            shuffle=False,
            drop_last=drop_last)
            
        valid_loader = None
        if valid_indices is not None:
            valid_loader = DataLoader(
                dataset=Subset(train_dataset, valid_indices),
                batch_size=hyperparameter_config['batch_size'],
                shuffle=False,
                drop_last=False)

        return {'train_loader': train_loader, 'valid_loader': valid_loader, 'batch_size': hyperparameter_config['batch_size']} 
开发者ID:automl,项目名称:Auto-PyTorch,代码行数:29,代码来源:create_dataloader.py

示例7: test_net_input_is_scoring_input

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def test_net_input_is_scoring_input(
            self, net_cls, module_cls, scoring_cls, data,
    ):
        # Make sure that whatever data type is put in the network is
        # received at the scoring side as well. For the caching case
        # we only receive datasets.
        import skorch
        from skorch.dataset import CVSplit
        import torch.utils.data.dataset
        from torch.utils.data.dataset import Subset

        class MyTorchDataset(torch.utils.data.dataset.TensorDataset):
            def __init__(self, X, y):
                super().__init__(
                    skorch.utils.to_tensor(X.reshape(-1, 1), device='cpu'),
                    skorch.utils.to_tensor(y, device='cpu'))

        class MySkorchDataset(skorch.dataset.Dataset):
            pass

        rawsplit = lambda ds: (ds, ds)
        cvsplit = CVSplit(2, random_state=0)

        def split_ignore_y(ds, y):
            return rawsplit(ds)

        table = [
            # Test a split where type(input) == type(output) is guaranteed
            (data, split_ignore_y, np.ndarray, False),
            (data, split_ignore_y, skorch.dataset.Dataset, True),
            ((MyTorchDataset(*data), None), rawsplit, MyTorchDataset, False),
            ((MyTorchDataset(*data), None), rawsplit, MyTorchDataset, True),
            ((MySkorchDataset(*data), None), rawsplit, np.ndarray, False),
            ((MySkorchDataset(*data), None), rawsplit, MySkorchDataset, True),

            # Test a split that splits datasets using torch Subset
            (data, cvsplit, np.ndarray, False),
            (data, cvsplit, Subset, True),
            ((MyTorchDataset(*data), None), cvsplit, Subset, False),
            ((MyTorchDataset(*data), None), cvsplit, Subset, True),
            ((MySkorchDataset(*data), None), cvsplit, np.ndarray, False),
            ((MySkorchDataset(*data), None), cvsplit, Subset, True),
        ]

        for input_data, train_split, expected_type, caching in table:
            self.net_input_is_scoring_input(
                net_cls,
                module_cls,
                scoring_cls,
                input_data,
                train_split,
                expected_type,
                caching) 
开发者ID:skorch-dev,项目名称:skorch,代码行数:55,代码来源:test_scoring.py

示例8: test_batch_size_smaller_than_num_gpus

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def test_batch_size_smaller_than_num_gpus(tmpdir):
    # we need at least 3 gpus for this test
    num_gpus = 3
    batch_size = 3

    class CurrentTestModel(EvalModelTemplate):

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            # batch norm doesn't work with batch size 1, we replace it
            self.c_d1_bn = torch.nn.ReLU()

        def training_step(self, *args, **kwargs):
            output = super().training_step(*args, **kwargs)
            loss = output['loss']
            # we make sure to add some metrics to the output dict,
            # this is essential for this test
            output['progress_bar'] = {'train_loss': loss}
            return output

        def train_dataloader(self):
            dataloader = super().train_dataloader()
            # construct a dataset with a size that is not divisible by num_gpus
            # therefore the last batch will have a size < num_gpus
            size = num_gpus * batch_size + (num_gpus - 1)
            dataset = Subset(dataloader.dataset, range(size))
            dataloader = DataLoader(
                dataset,
                batch_size=self.batch_size,
                drop_last=False,
            )
            return dataloader

    hparams = EvalModelTemplate.get_default_hparams()
    hparams['batch_size'] = batch_size
    model = CurrentTestModel(**hparams)

    trainer = Trainer(
        default_root_dir=tmpdir,
        max_epochs=1,
        limit_train_batches=0.1,
        limit_val_batches=0,
        gpus=num_gpus,
    )

    # we expect the reduction for the metrics also to happen on the last batch
    # where we will get fewer metrics than gpus
    result = trainer.fit(model)
    assert 1 == result 
开发者ID:PyTorchLightning,项目名称:pytorch-lightning,代码行数:51,代码来源:test_dataloaders.py

示例9: get_train_val_loaders

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def get_train_val_loaders(
    root_path: str,
    train_transforms: Callable,
    val_transforms: Callable,
    batch_size: int = 16,
    num_workers: int = 8,
    val_batch_size: Optional[int] = None,
    with_sbd: Optional[str] = None,
    limit_train_num_samples: Optional[int] = None,
    limit_val_num_samples: Optional[int] = None,
) -> Tuple[DataLoader, DataLoader, DataLoader]:

    train_ds = get_train_dataset(root_path)
    val_ds = get_val_dataset(root_path)

    if with_sbd is not None:
        sbd_train_ds = get_train_noval_sbdataset(with_sbd)
        train_ds = ConcatDataset([train_ds, sbd_train_ds])

    if limit_train_num_samples is not None:
        np.random.seed(limit_train_num_samples)
        train_indices = np.random.permutation(len(train_ds))[:limit_train_num_samples]
        train_ds = Subset(train_ds, train_indices)

    if limit_val_num_samples is not None:
        np.random.seed(limit_val_num_samples)
        val_indices = np.random.permutation(len(val_ds))[:limit_val_num_samples]
        val_ds = Subset(val_ds, val_indices)

    # random samples for evaluation on training dataset
    if len(val_ds) < len(train_ds):
        np.random.seed(len(val_ds))
        train_eval_indices = np.random.permutation(len(train_ds))[: len(val_ds)]
        train_eval_ds = Subset(train_ds, train_eval_indices)
    else:
        train_eval_ds = train_ds

    train_ds = TransformedDataset(train_ds, transform_fn=train_transforms)
    val_ds = TransformedDataset(val_ds, transform_fn=val_transforms)
    train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms)

    train_loader = idist.auto_dataloader(
        train_ds, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True,
    )

    val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
    val_loader = idist.auto_dataloader(
        val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False,
    )

    train_eval_loader = idist.auto_dataloader(
        train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False,
    )

    return train_loader, val_loader, train_eval_loader 
开发者ID:pytorch,项目名称:ignite,代码行数:57,代码来源:dataloaders.py

示例10: get_train_val_loaders

# 需要导入模块: from torch.utils.data import dataset [as 别名]
# 或者: from torch.utils.data.dataset import Subset [as 别名]
def get_train_val_loaders(
    root_path: str,
    train_transforms: Callable,
    val_transforms: Callable,
    batch_size: int = 16,
    num_workers: int = 8,
    val_batch_size: Optional[int] = None,
    limit_train_num_samples: Optional[int] = None,
    limit_val_num_samples: Optional[int] = None,
) -> Tuple[DataLoader, DataLoader, DataLoader]:

    train_ds = ImageNet(
        root_path, split="train", transform=lambda sample: train_transforms(image=sample)["image"], loader=opencv_loader
    )
    val_ds = ImageNet(
        root_path, split="val", transform=lambda sample: val_transforms(image=sample)["image"], loader=opencv_loader
    )

    if limit_train_num_samples is not None:
        np.random.seed(limit_train_num_samples)
        train_indices = np.random.permutation(len(train_ds))[:limit_train_num_samples]
        train_ds = Subset(train_ds, train_indices)

    if limit_val_num_samples is not None:
        np.random.seed(limit_val_num_samples)
        val_indices = np.random.permutation(len(val_ds))[:limit_val_num_samples]
        val_ds = Subset(val_ds, val_indices)

    # random samples for evaluation on training dataset
    if len(val_ds) < len(train_ds):
        np.random.seed(len(val_ds))
        train_eval_indices = np.random.permutation(len(train_ds))[: len(val_ds)]
        train_eval_ds = Subset(train_ds, train_eval_indices)
    else:
        train_eval_ds = train_ds

    train_loader = idist.auto_dataloader(
        train_ds, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True,
    )

    val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
    val_loader = idist.auto_dataloader(
        val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False,
    )

    train_eval_loader = idist.auto_dataloader(
        train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False,
    )

    return train_loader, val_loader, train_eval_loader 
开发者ID:pytorch,项目名称:ignite,代码行数:52,代码来源:dataloaders.py


注:本文中的torch.utils.data.dataset.Subset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。