本文整理汇总了Python中torch.t方法的典型用法代码示例。如果您正苦于以下问题:Python torch.t方法的具体用法?Python torch.t怎么用?Python torch.t使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.t方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: r_duvenaud
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def r_duvenaud(self, h):
# layers
aux = []
for l in range(len(h)):
param_sz = self.learn_args[l].size()
parameter_mat = torch.t(self.learn_args[l])[None, ...].expand(h[l].size(0), param_sz[1],
param_sz[0])
aux.append(torch.transpose(torch.bmm(parameter_mat, torch.transpose(h[l], 1, 2)), 1, 2))
for j in range(0, aux[l].size(1)):
# Mask whole 0 vectors
aux[l][:, j, :] = nn.Softmax()(aux[l][:, j, :].clone())*(torch.sum(aux[l][:, j, :] != 0, 1) > 0).expand_as(aux[l][:, j, :]).type_as(aux[l])
aux = torch.sum(torch.sum(torch.stack(aux, 3), 3), 1)
return self.learn_modules[0](torch.squeeze(aux))
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def forward(self,iput):
bin_a=None
level1_rep=None
[batch_size,_,_]=iput.size()
for hm,hm_encdr in enumerate(self.rnn_hms):
hmod=iput[:,:,hm].contiguous()
hmod=torch.t(hmod).unsqueeze(2)
op,a= hm_encdr(hmod)
if level1_rep is None:
level1_rep=op
bin_a=a
else:
level1_rep=torch.cat((level1_rep,op),1)
bin_a=torch.cat((bin_a,a),1)
level1_rep=level1_rep.permute(1,0,2)
final_rep_1,hm_level_attention_1=self.hm_level_rnn_1(level1_rep)
final_rep_1=final_rep_1.squeeze(1)
prediction_m=((self.fdiff1_1(final_rep_1)))
return torch.sigmoid(prediction_m)
示例3: calculate_positive_embedding_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def calculate_positive_embedding_loss(self, z, positive_edges):
"""
Calculating the loss on the positive edge embedding distances
:param z: Hidden vertex representation.
:param positive_edges: Positive training edges.
:return loss_term: Loss value on positive edge embedding.
"""
self.positive_surrogates = [random.choice(self.nodes) for node in range(positive_edges.shape[1])]
self.positive_surrogates = torch.from_numpy(np.array(self.positive_surrogates, dtype=np.int64).T)
self.positive_surrogates = self.positive_surrogates.type(torch.long).to(self.device)
positive_edges = torch.t(positive_edges)
self.positive_z_i = z[positive_edges[:, 0], :]
self.positive_z_j = z[positive_edges[:, 1], :]
self.positive_z_k = z[self.positive_surrogates, :]
norm_i_j = torch.norm(self.positive_z_i-self.positive_z_j, 2, 1, True).pow(2)
norm_i_k = torch.norm(self.positive_z_i-self.positive_z_k, 2, 1, True).pow(2)
term = norm_i_j-norm_i_k
term[term < 0] = 0
loss_term = term.mean()
return loss_term
示例4: calculate_negative_embedding_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def calculate_negative_embedding_loss(self, z, negative_edges):
"""
Calculating the loss on the negative edge embedding distances
:param z: Hidden vertex representation.
:param negative_edges: Negative training edges.
:return loss_term: Loss value on negative edge embedding.
"""
self.negative_surrogates = [random.choice(self.nodes) for node in range(negative_edges.shape[1])]
self.negative_surrogates = torch.from_numpy(np.array(self.negative_surrogates, dtype=np.int64).T)
self.negative_surrogates = self.negative_surrogates.type(torch.long).to(self.device)
negative_edges = torch.t(negative_edges)
self.negative_z_i = z[negative_edges[:, 0], :]
self.negative_z_j = z[negative_edges[:, 1], :]
self.negative_z_k = z[self.negative_surrogates, :]
norm_i_j = torch.norm(self.negative_z_i-self.negative_z_j, 2, 1, True).pow(2)
norm_i_k = torch.norm(self.negative_z_i-self.negative_z_k, 2, 1, True).pow(2)
term = norm_i_k-norm_i_j
term[term < 0] = 0
loss_term = term.mean()
return loss_term
示例5: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def __init__(self, dir, transform=None):
self.dir = dir
box_data = torch.from_numpy(loadmat(self.dir+'/box_data.mat')['boxes']).float()
op_data = torch.from_numpy(loadmat(self.dir+'/op_data.mat')['ops']).int()
sym_data = torch.from_numpy(loadmat(self.dir+'/sym_data.mat')['syms']).float()
#weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
num_examples = op_data.size()[1]
box_data = torch.chunk(box_data, num_examples, 1)
op_data = torch.chunk(op_data, num_examples, 1)
sym_data = torch.chunk(sym_data, num_examples, 1)
#weight_list = torch.chunk(weight_list, num_examples, 1)
self.transform = transform
self.trees = []
for i in range(len(op_data)) :
boxes = torch.t(box_data[i])
ops = torch.t(op_data[i])
syms = torch.t(sym_data[i])
tree = Tree(boxes, ops, syms)
self.trees.append(tree)
示例6: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def __init__(self, dir, transform=None):
self.dir = dir
box_data = torch.from_numpy(loadmat(self.dir+u'/box_data.mat')[u'boxes']).float()
op_data = torch.from_numpy(loadmat(self.dir+u'/op_data.mat')[u'ops']).int()
sym_data = torch.from_numpy(loadmat(self.dir+u'/sym_data.mat')[u'syms']).float()
#weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
num_examples = op_data.size()[1]
box_data = torch.chunk(box_data, num_examples, 1)
op_data = torch.chunk(op_data, num_examples, 1)
sym_data = torch.chunk(sym_data, num_examples, 1)
#weight_list = torch.chunk(weight_list, num_examples, 1)
self.transform = transform
self.trees = []
for i in xrange(len(op_data)) :
boxes = torch.t(box_data[i])
ops = torch.t(op_data[i])
syms = torch.t(sym_data[i])
tree = Tree(boxes, ops, syms)
self.trees.append(tree)
示例7: __getitem__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def __getitem__(self, index):
"""
Returns a single noisy sample. Multiple samples are fed to the collater
create a noising dataset batch.
"""
src_tokens = self.src_dataset[index]
src_lengths = torch.LongTensor([len(src_tokens)])
src_tokens = src_tokens.unsqueeze(0)
# Transpose src tokens to fit expected shape of x in noising function
# (batch size, sequence length) -> (sequence length, batch size)
src_tokens_t = torch.t(src_tokens)
with data_utils.numpy_seed(self.seed + index):
noisy_src_tokens = self.noiser.noising(src_tokens_t, src_lengths)
# Transpose back to expected src_tokens format
# (sequence length, 1) -> (1, sequence length)
noisy_src_tokens = torch.t(noisy_src_tokens)
return noisy_src_tokens[0]
示例8: predict
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def predict(self, x):
batch_size, dims = x.size()
query = F.normalize(self.query_proj(x), dim=1)
# Find the k-nearest neighbors of the query
scores = torch.matmul(query, torch.t(self.keys_var))
cosine_similarity, topk_indices_var = torch.topk(scores, self.top_k, dim=1)
# softmax of cosine similarities - embedding
softmax_score = F.softmax(self.softmax_temperature * cosine_similarity)
# retrive memory values - prediction
y_hat_indices = topk_indices_var.data[:, 0]
y_hat = self.values[y_hat_indices]
return y_hat, softmax_score
示例9: evaluate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
memory = model.module.initial_state(eval_batch_size, trainable=False).to(device)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
data = torch.t(data)
loss, memory = model(data, memory, targets)
loss = torch.mean(loss)
# data has shape [T * B, N]
total_loss += args.bptt * loss.item()
return total_loss / len(data_source)
示例10: zca_matrix
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def zca_matrix(data_tensor):
"""
Helper function: compute ZCA whitening matrix across a dataset ~ (N, C, H, W).
"""
# 1. flatten dataset:
X = data_tensor.view(data_tensor.shape[0], -1)
# 2. zero-center the matrix:
X = rescale(X, -1., 1.)
# 3. compute covariances:
cov = torch.t(X) @ X
# 4. compute ZCA(X) == U @ (diag(1/S)) @ torch.t(V) where U, S, V = SVD(cov):
U, S, V = torch.svd(cov)
return (U @ torch.diag(torch.reciprocal(S)) @ torch.t(V))
示例11: score_snippets
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def score_snippets(snippets, scorer):
""" Scores snippets given a scorer.
Inputs:
snippets (list of Snippet): The snippets to score.
scorer (dy.Expression): Dynet vector against which to score the snippets.
Returns:
dy.Expression, list of str, where the first is the scores and the second
is the names of the snippets that were scored.
"""
snippet_expressions = [snippet.embedding for snippet in snippets]
all_snippet_embeddings = torch.stack(snippet_expressions, dim=1)
scores = torch.t(torch.mm(torch.t(scorer), all_snippet_embeddings))
if scores.size()[0] != len(snippets):
raise ValueError("Got " + str(scores.size()[0]) + " scores for " + str(len(snippets)) + " snippets")
return scores, [snippet.name for snippet in snippets]
示例12: linspace_vector
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def linspace_vector(start, end, n_points):
# start is either one value or a vector
size = np.prod(start.size())
assert(start.size() == end.size())
if size == 1:
# start and end are 1d-tensors
res = torch.linspace(start, end, n_points)
else:
# start and end are vectors
res = torch.Tensor()
for i in range(0, start.size(0)):
res = torch.cat((res,
torch.linspace(start[i], end[i], n_points)),0)
res = torch.t(res.reshape(start.size(0), n_points))
return res
示例13: normalize_data
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def normalize_data(data):
reshaped = data.reshape(-1, data.size(-1))
att_min = torch.min(reshaped, 0)[0]
att_max = torch.max(reshaped, 0)[0]
# we don't want to divide by zero
att_max[ att_max == 0.] = 1.
if (att_max != 0.).all():
data_norm = (data - att_min) / att_max
else:
raise Exception("Zero!")
if torch.isnan(data_norm).any():
raise Exception("nans!")
return data_norm, att_min, att_max
示例14: normalize_masked_data
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def normalize_masked_data(data, mask, att_min, att_max):
# we don't want to divide by zero
att_max[ att_max == 0.] = 1.
if (att_max != 0.).all():
data_norm = (data - att_min) / att_max
else:
raise Exception("Zero!")
if torch.isnan(data_norm).any():
raise Exception("nans!")
# set masked out elements back to zero
data_norm[mask == 0] = 0
return data_norm, att_min, att_max
示例15: mutual_cost_mat
# 需要导入模块: import torch [as 别名]
# 或者: from torch import t [as 别名]
def mutual_cost_mat(self, index1, index2):
embs1 = self.emb_model[0](index1) # (batch_size1, dim)
embs2 = self.emb_model[1](index2) # (batch_size2, dim)
if self.cost_type == 'cosine':
# cosine similarity
energy1 = torch.sqrt(torch.sum(embs1 ** 2, dim=1, keepdim=True)) # (batch_size1, 1)
energy2 = torch.sqrt(torch.sum(embs2 ** 2, dim=1, keepdim=True)) # (batch_size2, 1)
cost = 1-torch.exp(-(1-torch.matmul(embs1, torch.t(embs2))/(torch.matmul(energy1, torch.t(energy2))+1e-5)))
else:
# Euclidean distance
embs = torch.matmul(embs1, torch.t(embs2)) # (batch_size1, batch_size2)
# (batch_size1, batch_size2)
embs_diag1 = torch.diag(torch.matmul(embs1, torch.t(embs1))).view(-1, 1).repeat(1, embs2.size(0))
# (batch_size2, batch_size1)
embs_diag2 = torch.diag(torch.matmul(embs2, torch.t(embs2))).view(-1, 1).repeat(1, embs1.size(0))
cost = 1-torch.exp(-(embs_diag1 + torch.t(embs_diag2) - 2 * embs)/embs1.size(1))
return cost