本文整理汇总了Python中torch.sub方法的典型用法代码示例。如果您正苦于以下问题:Python torch.sub方法的具体用法?Python torch.sub怎么用?Python torch.sub使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.sub方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_torch_sub
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def test_torch_sub():
x = torch.tensor([0.5, 0.8, 1.3]).fix_prec()
y = torch.tensor([0.1, 0.2, 0.3]).fix_prec()
# ADD Private Tensor at wrapper stack
x = x.private_tensor(allowed_users=["User"])
y = y.private_tensor(allowed_users=["User"])
z = torch.sub(x, y)
# Test if it preserves the parent user credentials.
assert z.allow("User")
assert not z.allow("NonRegisteredUser")
assert (z.child.child.child == torch.LongTensor([400, 600, 1000])).all()
z_fp = z.float_prec()
assert (z_fp == torch.tensor([0.4, 0.6, 1.0])).all()
示例2: give_edges
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def give_edges(self, pred, block_id):
r''' Returns the edges for given block.
Arguments:
pred (tensor): vertex predictions of dim
(batch_size, n_vertices, 3)
block_id (int): deformation block id (1,2 or 3)
'''
batch_size = pred.shape[0] # (batch_size, n_vertices, 3)
num_edges = self.edges[block_id-1].shape[0]
edges = self.edges[block_id-1]
nod1 = torch.index_select(pred, 1, edges[:, 0].long())
nod2 = torch.index_select(pred, 1, edges[:, 1].long())
assert(
nod1.shape == (batch_size, num_edges, 3) and
nod2.shape == (batch_size, num_edges, 3))
final_edges = torch.sub(nod1, nod2)
assert(final_edges.shape == (batch_size, num_edges, 3))
return final_edges
示例3: laplacian_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def laplacian_loss(self, pred1, pred2, block_id):
r''' Returns the Laplacian loss and move loss for given block.
Arguments:
pred (tensor): vertex predictions from previous block
pred (tensor): vertex predictions from current block
block_id (int): deformation block id (1,2 or 3)
'''
lap1 = self.give_laplacian_coordinates(pred1, block_id)
lap2 = self.give_laplacian_coordinates(pred2, block_id)
l_l = torch.sub(lap1, lap2).pow(2).sum(dim=2).mean()
# move loss from the authors' implementation
move_loss = 0
if block_id != 1:
move_loss = torch.sub(pred1, pred2).pow(2).sum(dim=2).mean()
return l_l, move_loss
示例4: margin_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def margin_loss(
embeddings: torch.Tensor,
labels: torch.Tensor,
alpha: float = 0.2,
beta: float = 1.0,
skip_labels: Union[int, List[int]] = -1,
) -> torch.Tensor:
"""@TODO: Docs. Contribution is welcome."""
embeddings = F.normalize(embeddings, p=2.0, dim=1)
distances = euclidean_distance(embeddings, embeddings)
margin_mask = _create_margin_mask(labels)
skip_mask = _skip_labels_mask(labels, skip_labels).float()
loss = torch.mul(
skip_mask,
F.relu(alpha + torch.mul(margin_mask, torch.sub(distances, beta))),
)
return loss.sum() / (skip_mask.sum() + _EPS)
示例5: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def forward(self, feat_index, feat_value):
# Step1: 先计算得到线性的那一部分
feat_value = torch.unsqueeze(feat_value, dim=2) # None * F * 1
first_weights = self.first_weights(feat_index) # None * F * 1
first_weight_value = torch.mul(first_weights, feat_value) # None * F * 1
first_weight_value = torch.squeeze(first_weight_value, dim=2) # None * F
y_first_order = torch.sum(first_weight_value, dim=1) # None
# Step2: 再计算二阶部分
secd_feat_emb = self.feat_embeddings(feat_index) # None * F * K
feat_emd_value = torch.mul(secd_feat_emb, feat_value) # None * F * K(广播)
# sum_square part
summed_feat_emb = torch.sum(feat_emd_value, 1) # None * K
interaction_part1 = torch.pow(summed_feat_emb, 2) # None * K
# squared_sum part
squared_feat_emd_value = torch.pow(feat_emd_value, 2) # None * K
interaction_part2 = torch.sum(squared_feat_emd_value, dim=1) # None * K
y_secd_order = 0.5 * torch.sub(interaction_part1, interaction_part2)
y_secd_order = torch.sum(y_secd_order, dim=1)
output = self.bias + y_first_order + y_secd_order
output = torch.unsqueeze(output, dim=1)
return output
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def forward(self, feat_index, feat_value, use_dropout=True):
feat_value = torch.unsqueeze(feat_value, dim=2) # None * F * 1
# Step1: 先计算一阶线性的部分 sum_square part
first_weights = self.first_weights(feat_index) # None * F * 1
first_weight_value = torch.mul(first_weights, feat_value)
y_first_order = torch.sum(first_weight_value, dim=2) # None * F
if use_dropout:
y_first_order = nn.Dropout(self.dropout_fm[0])(y_first_order) # None * F
# Step2: 再计算二阶部分
secd_feat_emb = self.feat_embeddings(feat_index) # None * F * K
feat_emd_value = secd_feat_emb * feat_value # None * F * K(广播)
# sum_square part
summed_feat_emb = torch.sum(feat_emd_value, 1) # None * K
interaction_part1 = torch.pow(summed_feat_emb, 2) # None * K
# squared_sum part
squared_feat_emd_value = torch.pow(feat_emd_value, 2) # None * K
interaction_part2 = torch.sum(squared_feat_emd_value, dim=1) # None * K
y_secd_order = 0.5 * torch.sub(interaction_part1, interaction_part2)
if use_dropout:
y_secd_order = nn.Dropout(self.dropout_fm[1])(y_secd_order)
# Step3: Deep部分
y_deep = feat_emd_value.reshape(-1, self.num_field * self.embedding_size) # None * (F * K)
if use_dropout:
y_deep = nn.Dropout(self.dropout_deep[0])(y_deep)
for i in range(1, len(self.layer_sizes) + 1):
y_deep = getattr(self, 'linear_' + str(i))(y_deep)
y_deep = getattr(self, 'batchNorm_' + str(i))(y_deep)
y_deep = F.relu(y_deep)
if use_dropout:
y_deep = getattr(self, 'dropout_' + str(i))(y_deep)
concat_input = torch.cat((y_first_order, y_secd_order, y_deep), dim=1)
output = self.fc(concat_input)
return output
示例7: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def forward(self, predictions, actuals):
cond = torch.zeros_like(predictions).to(self.device)
loss = torch.sub(actuals, predictions).to(self.device)
less_than = torch.mul(loss, torch.mul(torch.gt(loss, cond).type(torch.FloatTensor).to(self.device),
self.training_tau))
greater_than = torch.mul(loss, torch.mul(torch.lt(loss, cond).type(torch.FloatTensor).to(self.device),
(self.training_tau - 1)))
final_loss = torch.add(less_than, greater_than)
# losses = []
# for i in range(self.output_size):
# prediction = predictions[i]
# actual = actuals[i]
# if actual > prediction:
# losses.append((actual - prediction) * self.training_tau)
# else:
# losses.append((actual - prediction) * (self.training_tau - 1))
# loss = torch.Tensor(losses)
return torch.sum(final_loss) / self.output_size * 2
# test1 = torch.rand(100)
# test2 = torch.rand(100)
# pb = PinballLoss(0.5, 100)
# pb(test1, test2)
### sMAPE
# float sMAPE(vector<float>& out_vect, vector<float>& actuals_vect) {
# float sumf = 0;
# for (unsigned int indx = 0; indx<OUTPUT_SIZE; indx++) {
# auto forec = out_vect[indx];
# auto actual = actuals_vect[indx];
# sumf+=abs(forec-actual)/(abs(forec)+abs(actual));
# }
# return sumf / OUTPUT_SIZE * 200;
# }
示例8: sub
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def sub(t1, t2):
"""
Element-wise subtraction of values of operand t2 from values of operands t1 (i.e t1 - t2), not commutative.
Takes the two operands (scalar or tensor) whose elements are to be subtracted (operand 2 from operand 1)
as argument.
Parameters
----------
t1: tensor or scalar
The first operand from which values are subtracted
t2: tensor or scalar
The second operand whose values are subtracted
Returns
-------
result: ht.DNDarray
A tensor containing the results of element-wise subtraction of t1 and t2.
Examples:
---------
>>> import heat as ht
>>> ht.sub(4.0, 1.0)
tensor([3.])
>>> T1 = ht.float32([[1, 2], [3, 4]])
>>> T2 = ht.float32([[2, 2], [2, 2]])
>>> ht.sub(T1, T2)
tensor([[-1., 0.],
[1., 2.]])
>>> s = 2.0
>>> ht.sub(s, T1)
tensor([[ 1., 0.],
[-1., -2.]])
"""
return operations.__binary_op(torch.sub, t1, t2)
# Alias in compliance with numpy API
示例9: give_laplacian_coordinates
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def give_laplacian_coordinates(self, pred, block_id):
r''' Returns the laplacian coordinates for the predictions and given block.
The helper matrices are used to detect neighbouring vertices and
the number of neighbours which are relevant for the weight matrix.
The maximal number of neighbours is 8, and if a vertex has less,
the index -1 is used which points to the added zero vertex.
Arguments:
pred (tensor): vertex predictions
block_id (int): deformation block id (1,2 or 3)
'''
batch_size = pred.shape[0]
num_vert = pred.shape[1]
# Add "zero vertex" for vertices with less than 8 neighbours
vertex = torch.cat(
[pred, torch.zeros(batch_size, 1, 3).to(self.device)], 1)
assert(vertex.shape == (batch_size, num_vert+1, 3))
# Get 8 neighbours for each vertex; if a vertex has less, the
# remaining indices are -1
indices = torch.from_numpy(
self.lape_idx[block_id-1][:, :8]).to(self.device)
assert(indices.shape == (num_vert, 8))
weights = torch.from_numpy(
self.lape_idx[block_id-1][:, -1]).float().to(self.device)
weights = torch.reciprocal(weights)
weights = weights.view(-1, 1).expand(-1, 3)
vertex_select = vertex[:, indices.long(), :]
assert(vertex_select.shape == (batch_size, num_vert, 8, 3))
laplace = vertex_select.sum(dim=2) # Add neighbours
laplace = torch.mul(laplace, weights) # Multiply by weights
laplace = torch.sub(pred, laplace) # Subtract from prediction
assert(laplace.shape == (batch_size, num_vert, 3))
return laplace
示例10: cosine_distance
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def cosine_distance(
x: torch.Tensor, z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Calculate cosine distance between x and z.
@TODO: Docs. Contribution is welcome.
"""
x = F.normalize(x)
if z is not None:
z = F.normalize(z)
else:
z = x.clone()
return torch.sub(1, torch.mm(x, z.transpose(0, 1)))
示例11: skrnn_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def skrnn_loss(gmm_params, kl_params, data, mask=[], device =None):
def get_2d_normal(x1,x2,mu1,mu2,s1,s2,rho):
##### implementing Eqn. 24 and 25 of the paper ###########
norm1 = torch.sub(x1,mu1)
norm2 = torch.sub(x2,mu2)
s1s2 = torch.mul(s1,s2)
z = torch.div(norm1**2,s1**2) + torch.div(norm2**2,s2**2) - 2*torch.div(torch.mul(rho, torch.mul(norm1,norm2)),s1s2)
deno = 2*np.pi*s1s2*torch.sqrt(1-rho**2)
numer = torch.exp(torch.div(-z,2*(1-rho**2)))
##########################################################
return numer / deno
eos = torch.stack([torch.Tensor([0,0,0,0,1])]*data.size()[0], device = device).unsqueeze(1)
data = torch.cat([data, eos], 1)
target = data.view(-1, 5)
x1, x2, eos = target[:,0].unsqueeze(1), target[:,1].unsqueeze(1), target[:,2:]
q_t, pi_t = gmm_params[0], gmm_params[1]
res = get_2d_normal(x1,x2,gmm_params[2],gmm_params[3],gmm_params[4],gmm_params[5],gmm_params[6])
epsilon = torch.tensor(1e-5, dtype=torch.float) # to prevent overflow
Ls = torch.sum(torch.mul(pi_t,res),dim=1).unsqueeze(1)
Ls = -torch.log(Ls + epsilon)
mask_zero_out = 1-eos[:,2]
Ls = torch.mul(Ls, mask_zero_out.view(-1,1))
Lp = -torch.sum(eos*torch.log(q_t), -1).view(-1,1)
Lr = Ls + Lp
mu, sigma = kl_params[0], kl_params[1]
L_kl = -(0.5)*torch.mean(1 + sigma - mu**2 - torch.exp(sigma))
return Lr.mean(), L_kl
示例12: mdn_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def mdn_loss(mdn_params, data, mask=[]):
def get_2d_normal(x1,x2,mu1,mu2,s1,s2,rho):
##### implementing Eqn. 24 and 25 of the paper ###########
norm1 = torch.sub(x1.view(-1,1),mu1)
norm2 = torch.sub(x2.view(-1,1),mu2)
s1s2 = torch.mul(s1,s2)
z = torch.div(norm1**2,s1**2) + torch.div(norm2**2,s2**2) - 2*torch.div(torch.mul(rho, torch.mul(norm1,norm2)),s1s2)
deno = 2*np.pi*s1s2*torch.sqrt(1-rho**2)
numer = torch.exp(torch.div(-z,2*(1-rho**2)))
##########################################################
return numer / deno
eos, x1, x2 = data[:,0], data[:,1], data[:,2]
e_t, pi_t = mdn_params[0], mdn_params[1]
res = get_2d_normal(x1,x2,mdn_params[2],mdn_params[3],mdn_params[4],mdn_params[5],mdn_params[6])
epsilon = torch.tensor(1e-20, dtype=torch.float, device=device) # to prevent overflow
res1 = torch.sum(torch.mul(pi_t,res),dim=1)
res1 = -torch.log(torch.max(res1,epsilon))
res2 = torch.mul(eos, e_t.t()) + torch.mul(1-eos,1-e_t.t())
res2 = -torch.log(res2)
if len(mask)!=0: # using masking in case of padding
res1 = torch.mul(res1,mask)
res2 = torch.mul(res2,mask)
return torch.sum(res1+res2)
示例13: test_torch_sub
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def test_torch_sub(workers):
bob, alice, james = (workers["bob"], workers["alice"], workers["james"])
x = torch.tensor([0.5, 0.8, 1.3]).fix_prec()
y = torch.tensor([0.1, 0.2, 0.3]).fix_prec()
z = torch.sub(x, y)
assert (z.child.child == torch.LongTensor([400, 600, 1000])).all()
z = z.float_prec()
assert (z == torch.tensor([0.4, 0.6, 1.0])).all()
# with AdditiveSharingTensor
tx = torch.tensor([1.0, -2.0, 3.0])
ty = torch.tensor([0.1, 0.2, 0.3])
x = tx.fix_prec()
y = ty.fix_prec().share(bob, alice, crypto_provider=james)
z1 = torch.sub(y, x).get().float_prec()
z2 = torch.sub(x, y).get().float_prec()
assert (z1 == torch.sub(ty, tx)).all()
assert (z2 == torch.sub(tx, ty)).all()
# with constant integer
t = torch.tensor([1.0, -2.0, 3.0])
x = t.fix_prec()
c = 4
z = (x - c).float_prec()
assert (z == (t - c)).all()
z = (c - x).float_prec()
assert (z == (c - t)).all()
# with constant float
t = torch.tensor([1.0, -2.0, 3.0])
x = t.fix_prec()
c = 4.2
z = (x - c).float_prec()
assert ((z - (t - c)) < 10e-3).all()
z = (c - x).float_prec()
assert ((z - (c - t)) < 10e-3).all()
# with dtype int
x = torch.tensor([1.0, 2.0, 3.0]).fix_prec(dtype="int")
y = torch.tensor([0.1, 0.2, 0.3]).fix_prec(dtype="int")
z = x - y
assert (z.float_prec() == torch.tensor([0.9, 1.8, 2.7])).all()
示例14: load_velodyne_points_torch
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def load_velodyne_points_torch(points, rg, N):
cloud = pcl.PointCloud()
cloud.from_array(points)
clipper = cloud.make_cropbox()
clipper.set_MinMax(*rg)
out_cloud = clipper.filter()
if(out_cloud.size > 15000):
leaf_size = 0.05
vox = out_cloud.make_voxel_grid_filter()
vox.set_leaf_size(leaf_size, leaf_size, leaf_size)
out_cloud = vox.filter()
if(out_cloud.size > 0):
cloud = torch.from_numpy(np.asarray(out_cloud)).float().cuda()
points_count = cloud.shape[0]
# pdb.set_trace()
# print("indices", len(ind))
if(points_count > 1):
prob = torch.randperm(points_count)
if(points_count > N):
idx = prob[:N]
crop = cloud[idx]
# print(len(crop))
else:
r = int(N/points_count)
cloud = cloud.repeat(r+1,1)
crop = cloud[:N]
# print(len(crop))
x_shift = (rg[0] + rg[4])/2.0
y_shift = (rg[1] + rg[5])/2.0
z_shift = -1.8
shift = torch.tensor([x_shift, y_shift, z_shift]).cuda()
crop = torch.sub(crop, shift)
else:
crop = torch.ones(N,3).cuda()
# print("points count zero")
else:
crop = torch.ones(N,3).cuda()
# print("points count zero")
return crop
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sub [as 别名]
def forward(self, inp, char_vec, old_k, old_w, text_len, hidden1, hidden2, bias = 0):
if len(inp.size()) == 2:
inp=inp.unsqueeze(1)
embed = torch.cat([inp, old_w], dim=-1) # adding attention window to the input of rnn
output1, hidden1 = self.rnn1(embed, hidden1)
if self.bi_mode == 1:
output1 = output1[:,:,0:self.hidden_size] + output1[:,:,self.hidden_size:]
##### implementing Eqn. 48 - 51 of the paper ###########
abk_t = self.window(output1.squeeze(1)).exp()
a_t, b_t, k_t = abk_t.split(self.num_attn_gaussian, dim=1)
k_t = old_k + k_t
#######################################################
##### implementing Eqn. 46 and 47 of the paper ###########
u = torch.linspace(1, char_vec.shape[1], char_vec.shape[1], device=device)
phi_bku = torch.exp(torch.mul(torch.sub(k_t.unsqueeze(2).repeat((1,1,len(u))),u)**2,
-b_t.unsqueeze(2)))
phi = torch.sum(torch.mul(a_t.unsqueeze(2),phi_bku),dim=1)* (char_vec.shape[1]/text_len)
win_t = torch.sum(torch.mul(phi.unsqueeze(2), char_vec),dim=1)
##########################################################
inp_skip = torch.cat([output1, inp, win_t.unsqueeze(1)], dim=-1) # implementing skip connection
output2, hidden2 = self.rnn2(inp_skip, hidden2)
if self.bi_mode == 1:
output2 = output2[:,:,0:self.hidden_size] + output2[:,:,self.hidden_size:]
output = torch.cat([output1,output2], dim=-1)
##### implementing Eqn. 17 to 22 of the paper ###########
y_t = self.mdn(output.squeeze(1))
e_t = y_t[:,0:1]
pi_t, mu1_t, mu2_t, s1_t, s2_t, rho_t = torch.split(y_t[:,1:], self.num_gaussian, dim=1)
e_t = F.sigmoid(e_t)
pi_t = F.softmax(pi_t*(1+bias)) # bias would be used during inference
s1_t, s2_t = torch.exp(s1_t), torch.exp(s2_t)
rho_t = torch.tanh(rho_t)
##########################################################
mdn_params = [e_t, pi_t, mu1_t, mu2_t, s1_t, s2_t, rho_t, phi, win_t, k_t]
return mdn_params, hidden1, hidden2