本文整理汇总了Python中torch.std方法的典型用法代码示例。如果您正苦于以下问题:Python torch.std方法的具体用法?Python torch.std怎么用?Python torch.std使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.std方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_SDE
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def test_SDE(self):
def f(x, a, s):
return -a * x
def g(x, a, s):
return s
em = AffineEulerMaruyama((f, g), (0.02, 0.15), Normal(0., 1.), Normal(0., 1.), dt=1e-2, num_steps=10)
model = LinearGaussianObservations(em, scale=1e-3)
x, y = model.sample_path(500)
for filt in [SISR(model, 500, proposal=Bootstrap()), UKF(model)]:
filt = filt.initialize().longfilter(y)
means = filt.result.filter_means
if isinstance(filt, UKF):
means = means[:, 0]
self.assertLess(torch.std(x - means), 5e-2)
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def forward(self, z):
if z.size(-1) == 1:
return z
mu = torch.mean(z, keepdim=True, dim=-1)
sigma = torch.std(z, keepdim=True, dim=-1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
if self.affine:
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
# NOTE(nikita): the t2t code does the following instead, with eps=1e-6
# However, I currently have no reason to believe that this difference in
# implementation matters.
# mu = torch.mean(z, keepdim=True, dim=-1)
# variance = torch.mean((z - mu.expand_as(z))**2, keepdim=True, dim=-1)
# ln_out = (z - mu.expand_as(z)) * torch.rsqrt(variance + self.eps).expand_as(z)
# ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
return ln_out
# %%
示例3: comp
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def comp(self, inpu):
in_mat1 = torch.triu(inpu.repeat(inpu.size(0), 1), diagonal=1)
in_mat2 = torch.triu(inpu.repeat(inpu.size(0), 1).t(), diagonal=1)
comp_first = (in_mat1 - in_mat2)
comp_second = (in_mat2 - in_mat1)
std1 = torch.std(comp_first).item()
std2 = torch.std(comp_second).item()
comp_first = torch.sigmoid(comp_first * (6.8 / std1))
comp_second = torch.sigmoid(comp_second * (6.8 / std2))
comp_first = torch.triu(comp_first, diagonal=1)
comp_second = torch.triu(comp_second, diagonal=1)
return (torch.sum(comp_first, 1) + torch.sum(comp_second, 0) + 1) / inpu.size(0)
示例4: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def __call__(self, x):
if not self.auto:
for idx in range(x.shape[0]):
xmean = torch.mean(x[idx, :, :])
xstd = torch.std(x[idx, :, :])
x[idx, :, :] = (x[idx, :, :] - xmean) / xstd
if xstd == 0:
x[idx, :, :] = 0.0
else:
view = x.view(x.shape[0], -1)
length = view.shape[1]
mean = view.mean(dim=1)
var = view.var(dim=1)
self.var = var / (self.count + 1) + self.count / (self.count + 1) * self.var
self.var += self.count / ((self.count + 1) ** 2) * (self.mean - mean) ** 2
self.mean = (self.count * self.mean + view.mean(dim=1)) / (self.count + 1)
for idx in range(x.shape[0]):
x[idx, :, :] = (x[idx, :, :] - self.mean) / torch.sqrt(self.var)
if xstd == 0:
x[idx, :, :] = 0.0
return x
示例5: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def forward(self, x_context, y_context, x_all=None, y_all=None, n = 10):
y_sigma = None
z_context = self.xy_to_z_params(x_context, y_context)
if self.training:
z_all = self.xy_to_z_params(x_all, y_all)
z_sample = self.reparameterise(z_all)
y_hat = self.decoder.forward(z_sample, x_all)
else:
z_all = z_context
if self.type == 'ST':
temp = torch.zeros([n,y_context.shape[0], y_context.shape[2]], device = 'cpu')
elif self.type == 'MT':
temp = torch.zeros([n,y_context.shape[0],1,y_context.shape[2],y_context.shape[3],
y_context.shape[4]], device = 'cpu')
for i in range(n):
z_sample = self.reparameterise(z_all)
temp[i,:] = self.decoder.forward(z_sample, x_context)
y_hat = torch.mean(temp, dim=0).to(self.device)
if n > 1:
y_sigma = torch.std(temp, dim=0).to(self.device)
return y_hat, z_all, z_context, y_sigma
###############################################################################
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def forward(self, x_context, y_context, x_all=None, y_all=None, n = 10):
y_sigma = None
y_sigma_84 = None
z_context = self.xy_to_z_params(x_context, y_context)
if self.training:
z_all = self.xy_to_z_params(x_all, y_all)
z_sample = self.reparameterise(z_all)
y_hat, y_hat_84 = self.decoder.forward(z_sample)
else:
z_all = z_context
temp = torch.zeros([n,y_context.shape[0], y_context.shape[2]], device = self.device)
temp_84 = torch.zeros([n,y_context.shape[0], y_context.shape[2]], device = self.device)
for i in range(n):
z_sample = self.reparameterise(z_all)
temp[i,:], temp_84[i,:] = self.decoder.forward(z_sample)
y_hat = torch.mean(temp, dim=0).to(self.device)
y_hat_84 = torch.mean(temp_84, dim=0).to(self.device)
if n > 1:
y_sigma = torch.std(temp, dim=0).to(self.device)
y_sigma_84 = torch.std(temp_84, dim=0).to(self.device)
return y_hat, y_hat_84, z_all, z_context, y_sigma, y_sigma_84
###############################################################################
示例7: build
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def build(self, corpus, min_freq=1, embed=None):
sequences = getattr(corpus, self.name)
counter = Counter(token for sequence in sequences
for token in self.transform(sequence))
self.vocab = Vocab(counter, min_freq, self.specials)
if not embed:
self.embed = None
else:
tokens = self.transform(embed.tokens)
# if the `unk` token has existed in the pretrained,
# then replace it with a self-defined one
if embed.unk:
tokens[embed.unk_index] = self.unk
self.vocab.extend(tokens)
self.embed = torch.zeros(len(self.vocab), embed.dim)
self.embed[self.vocab.token2id(tokens)] = embed.vectors
self.embed /= torch.std(self.embed)
示例8: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def __init__(self, n_head, d_model, dropout):
super().__init__()
self.n_head = n_head
self.d_v = self.d_k = d_k = d_model // n_head
for name in ["w_qs", "w_ks", "w_vs"]:
self.__setattr__(name,
nn.Parameter(torch.FloatTensor(n_head, d_model, d_k)))
self.attention = ScaledDotProductAttention(d_k, dropout)
self.lm = LayerNorm(d_model)
self.w_o = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
self.w_qs.data.normal_(std=const.INIT_RANGE)
self.w_ks.data.normal_(std=const.INIT_RANGE)
self.w_vs.data.normal_(std=const.INIT_RANGE)
示例9: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def __init__(self, n_head, d_model, dropout=0.5):
super().__init__()
self.n_head = n_head
self.d_v = self.d_k = d_k = d_model // n_head
for name in ["w_qs", "w_ks", "w_vs"]:
self.__setattr__(name,
nn.Parameter(torch.FloatTensor(n_head, d_model, d_k)))
self.attention = ScaledDotProductAttention(d_k, dropout)
self.lm = LayerNorm(d_model)
self.w_o = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
self.w_qs.data.normal_(std=const.INIT_RANGE)
self.w_ks.data.normal_(std=const.INIT_RANGE)
self.w_vs.data.normal_(std=const.INIT_RANGE)
示例10: init_weights
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def init_weights(self):
"""Initialize weights of the head."""
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.reppoints_cls_conv, std=0.01)
normal_init(self.reppoints_cls_out, std=0.01, bias=bias_cls)
normal_init(self.reppoints_pts_init_conv, std=0.01)
normal_init(self.reppoints_pts_init_out, std=0.01)
normal_init(self.reppoints_pts_refine_conv, std=0.01)
normal_init(self.reppoints_pts_refine_out, std=0.01)
示例11: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def forward(self, z):
if z.size(1) == 1:
return z
mu = torch.mean(z, keepdim=True, dim=-1)
sigma = torch.std(z, keepdim=True, dim=-1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
return ln_out
示例12: extract_stats
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def extract_stats(opts):
dset = build_dataset_providers(opts)
collater_keys = dset[-1]
dset = dset[0]
collater = DictCollater()
collater.batching_keys.extend(collater_keys)
dloader = DataLoader(dset, batch_size = 100,
shuffle=True, collate_fn=collater,
num_workers=opts.num_workers)
# Compute estimation of bpe. As we sample chunks randomly, we
# should say that an epoch happened after seeing at least as many
# chunks as total_train_wav_dur // chunk_size
bpe = (dset.total_wav_dur // opts.chunk_size) // 500
data = {}
# run one epoch of training data to extract z-stats of minions
for bidx, batch in enumerate(dloader, start=1):
print('Bidx: {}/{}'.format(bidx, bpe))
for k, v in batch.items():
if k in opts.exclude_keys:
continue
if k not in data:
data[k] = []
data[k].append(v)
if bidx >= opts.max_batches:
break
stats = {}
data = dict((k, torch.cat(v)) for k, v in data.items())
for k, v in data.items():
stats[k] = {'mean':torch.mean(torch.mean(v, dim=2), dim=0),
'std':torch.std(torch.std(v, dim=2), dim=0)}
with open(opts.out_file, 'wb') as stats_f:
pickle.dump(stats, stats_f)
示例13: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def __init__(self, mean=0.0, std=0.1):
"""Perturb an image by normally distributed additive noise."""
self.mean = mean
self.std = std
示例14: read_embeddings
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def read_embeddings(self, embed, unk=None):
words = embed.words
# if the UNK token has existed in pretrained vocab,
# then replace it with a self-defined one
if unk in embed:
words[words.index(unk)] = self.UNK
self.extend(words)
self.embeddings = torch.zeros(self.n_words, embed.dim)
for i, word in enumerate(self.words):
if word in embed:
self.embeddings[i] = embed[word]
self.embeddings /= torch.std(self.embeddings)
示例15: mutualInformationLoss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import std [as 别名]
def mutualInformationLoss(states, rewards_st, weight, loss_manager):
"""
TODO: Equation needs to be fixed for faster computation
Loss criterion to assess mutual information between predicted states and rewards
see: https://en.wikipedia.org/wiki/Mutual_information
:param states: (th.Tensor)
:param rewards_st:(th.Tensor)
:param weight: coefficient to weight the loss (float)
:param loss_manager: loss criterion needed to log the loss value
:return:
"""
X = states
Y = rewards_st
I = 0
eps = 1e-10
p_x = float(1 / np.sqrt(2 * np.pi)) * \
th.exp(-th.pow(th.norm((X - th.mean(X, dim=0)) / (th.std(X, dim=0) + eps), 2, dim=1), 2) / 2) + eps
p_y = float(1 / np.sqrt(2 * np.pi)) * \
th.exp(-th.pow(th.norm((Y - th.mean(Y, dim=0)) / (th.std(Y, dim=0) + eps), 2, dim=1), 2) / 2) + eps
for x in range(X.shape[0]):
for y in range(Y.shape[0]):
p_xy = float(1 / np.sqrt(2 * np.pi)) * \
th.exp(-th.pow(th.norm((th.cat([X[x], Y[y]]) - th.mean(th.cat([X, Y], dim=1), dim=0)) /
(th.std(th.cat([X, Y], dim=1), dim=0) + eps), 2), 2) / 2) + eps
I += p_xy * th.log(p_xy / (p_x[x] * p_y[y]))
mutual_info_loss = th.exp(-I)
loss_manager.addToLosses('mutual_info', weight, mutual_info_loss)
return weight * mutual_info_loss