本文整理汇总了Python中torch.stack方法的典型用法代码示例。如果您正苦于以下问题:Python torch.stack方法的具体用法?Python torch.stack怎么用?Python torch.stack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.stack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bbox_transform
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def bbox_transform(ex_rois, gt_rois):
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = torch.log(gt_widths / ex_widths)
targets_dh = torch.log(gt_heights / ex_heights)
targets = torch.stack(
(targets_dx, targets_dy, targets_dw, targets_dh), 1)
return targets
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:21,代码来源:bbox_transform.py
示例2: clip_boxes
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def clip_boxes(boxes, im_shape):
"""
Clip boxes to image boundaries.
boxes must be tensor or Variable, im_shape can be anything but Variable
"""
if not hasattr(boxes, 'data'):
boxes_ = boxes.numpy()
boxes = boxes.view(boxes.size(0), -1, 4)
boxes = torch.stack(\
[boxes[:,:,0].clamp(0, im_shape[1] - 1),
boxes[:,:,1].clamp(0, im_shape[0] - 1),
boxes[:,:,2].clamp(0, im_shape[1] - 1),
boxes[:,:,3].clamp(0, im_shape[0] - 1)], 2).view(boxes.size(0), -1)
return boxes
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:19,代码来源:bbox_transform.py
示例3: centerness_target
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def centerness_target(self, anchors, bbox_targets):
# only calculate pos centerness targets, otherwise there may be nan
gts = self.bbox_coder.decode(anchors, bbox_targets)
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
l_ = anchors_cx - gts[:, 0]
t_ = anchors_cy - gts[:, 1]
r_ = gts[:, 2] - anchors_cx
b_ = gts[:, 3] - anchors_cy
left_right = torch.stack([l_, r_], dim=1)
top_bottom = torch.stack([t_, b_], dim=1)
centerness = torch.sqrt(
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) *
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]))
assert not torch.isnan(centerness).any()
return centerness
示例4: offset_to_pts
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def offset_to_pts(self, center_list, pred_list):
"""Change from point offset to point coordinate."""
pts_list = []
for i_lvl in range(len(self.point_strides)):
pts_lvl = []
for i_img in range(len(center_list)):
pts_center = center_list[i_img][i_lvl][:, :2].repeat(
1, self.num_points)
pts_shift = pred_list[i_lvl][i_img]
yx_pts_shift = pts_shift.permute(1, 2, 0).view(
-1, 2 * self.num_points)
y_pts_shift = yx_pts_shift[..., 0::2]
x_pts_shift = yx_pts_shift[..., 1::2]
xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
pts_lvl.append(pts)
pts_lvl = torch.stack(pts_lvl, 0)
pts_list.append(pts_lvl)
return pts_list
示例5: roi_rescale
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def roi_rescale(self, rois, scale_factor):
"""Scale RoI coordinates by scale factor.
Args:
rois (torch.Tensor): RoI (Region of Interest), shape (n, 5)
scale_factor (float): Scale factor that RoI will be multiplied by.
Returns:
torch.Tensor: Scaled RoI.
"""
cx = (rois[:, 1] + rois[:, 3]) * 0.5
cy = (rois[:, 2] + rois[:, 4]) * 0.5
w = rois[:, 3] - rois[:, 1]
h = rois[:, 4] - rois[:, 2]
new_w = w * scale_factor
new_h = h * scale_factor
x1 = cx - new_w * 0.5
x2 = cx + new_w * 0.5
y1 = cy - new_h * 0.5
y2 = cy + new_h * 0.5
new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
return new_rois
示例6: distance2bbox
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1])
y1 = y1.clamp(min=0, max=max_shape[0])
x2 = x2.clamp(min=0, max=max_shape[1])
y2 = y2.clamp(min=0, max=max_shape[0])
return torch.stack([x1, y1, x2, y2], -1)
示例7: r_duvenaud
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def r_duvenaud(self, h):
# layers
aux = []
for l in range(len(h)):
param_sz = self.learn_args[l].size()
parameter_mat = torch.t(self.learn_args[l])[None, ...].expand(h[l].size(0), param_sz[1],
param_sz[0])
aux.append(torch.transpose(torch.bmm(parameter_mat, torch.transpose(h[l], 1, 2)), 1, 2))
for j in range(0, aux[l].size(1)):
# Mask whole 0 vectors
aux[l][:, j, :] = nn.Softmax()(aux[l][:, j, :].clone())*(torch.sum(aux[l][:, j, :] != 0, 1) > 0).expand_as(aux[l][:, j, :]).type_as(aux[l])
aux = torch.sum(torch.sum(torch.stack(aux, 3), 3), 1)
return self.learn_modules[0](torch.squeeze(aux))
示例8: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def forward(self, query, key):
querys = self.W_query(query) # [N, T_q, num_units]
keys = self.W_key(key) # [N, T_k, num_units]
values = self.W_value(key)
split_size = self.num_units // self.num_heads
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
scores = scores / (self.key_dim ** 0.5)
scores = F.softmax(scores, dim=3)
# out = score * V
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
return out
示例9: __next__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, interp=cv2.INTER_LINEAR)[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Normalize RGB
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32) # uint8 to fp16/fp32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return self.sources, img, img0, None
示例10: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def forward(self, input, target):
features = self.feats(input)
output_indices = list(range(0, (target.size(1))))
# Iterate over fully connecteds for each imu, perform forward pass and
# record the output.
imu_out = []
for i in self.imus:
imu_i = getattr(self, 'imu{}'.format(i))
imu_out.append(imu_i(features))
# Add a singleton dim at 1 for sequence length, which is always 1 in
# this model.
output = torch.stack(imu_out, dim=1).unsqueeze(1)
output /= output.norm(2, 3, keepdim=True)
return torch.stack(
imu_out,
dim=1).unsqueeze(1), target, torch.LongTensor(output_indices)
示例11: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def forward(self, input, target):
input = input[:, :self.args.input_length * 3]
target = target[:, -self.args.output_length:]
features = self.resnet_features(input)
output_indices = list(
range(self.args.sequence_length - self.args.output_length,
self.args.sequence_length))
# Iterate over fully connecteds for each imu, perform forward pass and
# record the output.
all_output = []
for imu_id in range(self.args.output_length):
imu_out = []
for i in self.imus:
imu_i = getattr(self, 'imu{}'.format(i))
imu_out.append(imu_i(features))
output = torch.stack(imu_out, dim=1).unsqueeze(1)
all_output.append(output)
# Add a singleton dim at 1 for sequence length, which is always 1 in
# this model.
all_output = torch.cat(all_output, dim=1)
return all_output, target, torch.LongTensor(output_indices)
示例12: __getitem__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def __getitem__(self, idx):
fid = self.data_set_list[idx]
if self.read_features:
features = []
for i in range(self.sequence_length):
feature_path = os.path.join(
self.features_dir,
self.frames_metadata[fid + i]['cur_frame'] + '.pytar')
features.append(torch.load(feature_path))
input = torch.stack(features)
else:
image = self.load_and_resize(
os.path.join(self.root_dir, 'images', fid))
segment = self.load_and_resize_segmentation(
os.path.join(self.root_dir, 'walkable', fid))
# The two 0s are just place holders. They can be replaced by any values
return (image, segment, 0, 0, ['images' + fid])
示例13: generate_embedding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def generate_embedding(bert_model, labels):
"""Generate bert's embedding from fine-tuned model."""
batch_size, time = labels.shape
cls_ids = torch.full(
(batch_size, 1), bert_model.bert_text_encoder.cls_idx, dtype=labels.dtype, device=labels.device)
bert_labels = torch.cat([cls_ids, labels], 1)
# replace eos with sep
eos_idx = bert_model.bert_text_encoder.eos_idx
sep_idx = bert_model.bert_text_encoder.sep_idx
bert_labels[bert_labels == eos_idx] = sep_idx
embedding, _ = bert_model.bert(bert_labels, output_all_encoded_layers=True)
# sum over all layers embedding
embedding = torch.stack(embedding).sum(0)
# get rid of cls
embedding = embedding[:, 1:]
assert labels.shape == embedding.shape[:-1]
return embedding
示例14: bbox_transform
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def bbox_transform(ex_rois, gt_rois):
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = torch.log(gt_widths / ex_widths)
targets_dh = torch.log(gt_heights / ex_heights)
targets = torch.stack(
(targets_dx, targets_dy, targets_dw, targets_dh),1)
return targets
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import stack [as 别名]
def forward(self, inputs, hidden=None):
if hidden is None and self.mode != "jordan":
# if hidden is None:
batch_size = inputs.size(0)
# print(batch_size)
hidden = torch.autograd.Variable(torch.zeros(batch_size,
self.hidden_size))
if self.cuda:
hidden = hidden.cuda()
output_forward, hidden_forward = self._forward(inputs, hidden)
output_forward = torch.stack(output_forward, dim=0)
if not self.bidirectional:
if self.batch_first:
output_forward = output_forward.transpose(0,1)
return output_forward, hidden_forward
output_reversed, hidden_reversed = self._reversed_forward(inputs, hidden)
hidden = torch.cat([hidden_forward, hidden_reversed], dim=hidden_forward.dim() - 1)
output_reversed = torch.stack(output_reversed, dim=0)
output = torch.cat([output_forward, output_reversed],
dim=output_reversed.data.dim() - 1)
if self.batch_first:
output = output.transpose(0,1)
return output, hidden