当前位置: 首页>>代码示例>>Python>>正文


Python torch.sort方法代码示例

本文整理汇总了Python中torch.sort方法的典型用法代码示例。如果您正苦于以下问题:Python torch.sort方法的具体用法?Python torch.sort怎么用?Python torch.sort使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch的用法示例。


在下文中一共展示了torch.sort方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: lovasz_hinge_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_hinge_flat(logits, labels):
    """
    Binary Lovasz hinge loss
      logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
      labels: [P] Tensor, binary ground truth labels (0 or 1)
      ignore: label to ignore
    """
    if len(labels) == 0:
        # only void pixels, the gradients should be 0
        return logits.sum() * 0.
    signs = 2. * labels.float() - 1.
    errors = (1. - logits * Variable(signs))
    errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
    perm = perm.data
    gt_sorted = labels[perm]
    grad = lovasz_grad(gt_sorted)
    loss = torch.dot(F.relu(errors_sorted), Variable(grad))
    return loss 
开发者ID:edwardzhou130,项目名称:PolarSeg,代码行数:20,代码来源:lovasz_losses.py

示例2: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def forward(self, x, x_len, atten_mask):
        CoAtt = torch.bmm(x, x.transpose(1, 2))
        CoAtt = atten_mask.unsqueeze(1) * CoAtt - (1 - atten_mask).unsqueeze(1) * INF
        CoAtt = torch.softmax(CoAtt, dim=-1)
        new_x = torch.cat([torch.bmm(CoAtt, x), x], -1)

        sorted_x_len, indx = torch.sort(x_len, 0, descending=True)
        new_x = pack_padded_sequence(new_x[indx], sorted_x_len.data.tolist(), batch_first=True)

        h0 = to_cuda(torch.zeros(2, x_len.size(0), self.hidden_size // 2), self.use_cuda)
        c0 = to_cuda(torch.zeros(2, x_len.size(0), self.hidden_size // 2), self.use_cuda)
        packed_h, (packed_h_t, _) = self.model(new_x, (h0, c0))

        # restore the sorting
        _, inverse_indx = torch.sort(indx, 0)
        packed_h_t = torch.cat([packed_h_t[i] for i in range(packed_h_t.size(0))], -1)
        restore_packed_h_t = packed_h_t[inverse_indx]
        output = restore_packed_h_t
        return output 
开发者ID:hugochan,项目名称:BAMnet,代码行数:21,代码来源:modules.py

示例3: cxcy_to_gcxgcy

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def cxcy_to_gcxgcy(cxcy, priors_cxcy):
    """
    Encode bounding boxes (that are in center-size form) w.r.t. the corresponding prior boxes (that are in center-size form).

    For the center coordinates, find the offset with respect to the prior box, and scale by the size of the prior box.
    For the size coordinates, scale by the size of the prior box, and convert to the log-space.

    In the model, we are predicting bounding box coordinates in this encoded form.

    :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_priors, 4)
    :param priors_cxcy: prior boxes with respect to which the encoding must be performed, a tensor of size (n_priors, 4)
    :return: encoded bounding boxes, a tensor of size (n_priors, 4)
    """

    # The 10 and 5 below are referred to as 'variances' in the original Caffe repo, completely empirical
    # They are for some sort of numerical conditioning, for 'scaling the localization gradient'
    # See https://github.com/weiliu89/caffe/issues/155
    return torch.cat([(cxcy[:, :2] - priors_cxcy[:, :2]) / (priors_cxcy[:, 2:] / 10),  # g_c_x, g_c_y
                      torch.log(cxcy[:, 2:] / priors_cxcy[:, 2:]) * 5], 1)  # g_w, g_h 
开发者ID:zzzDavid,项目名称:ICDAR-2019-SROIE,代码行数:21,代码来源:utils.py

示例4: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def forward(self, inputs, targets):

        N, C, H, W = inputs.size()
        masks = torch.zeros(N, C, H, W).to(targets.device).scatter_(1, targets.view(N, 1, H, W), 1)

        loss = 0.

        for mask, input in zip(masks.view(N, -1), inputs.view(N, -1)):

            max_margin_errors = 1. - ((mask * 2 - 1) * input)
            errors_sorted, indices = torch.sort(max_margin_errors, descending=True)
            labels_sorted = mask[indices.data]

            inter = labels_sorted.sum() - labels_sorted.cumsum(0)
            union = labels_sorted.sum() + (1. - labels_sorted).cumsum(0)
            iou = 1. - inter / union

            p = len(labels_sorted)
            if p > 1:
                iou[1:p] = iou[1:p] - iou[0:-1]

            loss += torch.dot(nn.functional.relu(errors_sorted), iou)

        return loss / N 
开发者ID:mapbox,项目名称:robosat,代码行数:26,代码来源:losses.py

示例5: lovasz_hinge_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_hinge_flat(self, logits, labels):
        """
        Binary Lovasz hinge loss
          logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
          labels: [P] Tensor, binary ground truth labels (0 or 1)
          ignore: label to ignore
        """
        if len(labels) == 0:
            # only void pixels, the gradients should be 0
            return logits.sum() * 0.
        signs = 2. * labels.float() - 1.
        errors = (1. - logits * Variable(signs))
        errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
        perm = perm.data
        gt_sorted = labels[perm]
        grad = lovasz_grad(gt_sorted)
        loss = torch.dot(F.relu(errors_sorted), Variable(grad))
        return loss 
开发者ID:soeaver,项目名称:Parsing-R-CNN,代码行数:20,代码来源:lovasz_hinge_loss.py

示例6: __init__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def __init__(self, dim=-1, k=None):
        """sparsemax: normalizing sparse transform (a la softmax).

        Solves the projection:

            min_p ||x - p||_2   s.t.    p >= 0, sum(p) == 1.

        Parameters
        ----------
        dim : int
            The dimension along which to apply sparsemax.

        k : int or None
            number of largest elements to partial-sort over. For optimal
            performance, should be slightly bigger than the expected number of
            nonzeros in the solution. If the solution is more than k-sparse,
            this function is recursively called with a 2*k schedule.
            If `None`, full sorting is performed from the beginning.
        """
        self.dim = dim
        self.k = k
        super(Sparsemax, self).__init__() 
开发者ID:deep-spin,项目名称:entmax,代码行数:24,代码来源:activations.py

示例7: __calculate_eps__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def __calculate_eps__(self, matrix, num_nodes, avg_degree):
        r"""Calculates threshold necessary to achieve a given average degree.

        Args:
            matrix (Tensor): Adjacency matrix or edge weights.
            num_nodes (int): Number of nodes.
            avg_degree (int): Target average degree.

        :rtype: (:class:`float`)
        """
        sorted_edges = torch.sort(matrix.flatten(), descending=True).values
        if avg_degree * num_nodes > len(sorted_edges):
            return -np.inf

        left = sorted_edges[avg_degree * num_nodes - 1]
        right = sorted_edges[avg_degree * num_nodes]
        return (left + right) / 2.0 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:19,代码来源:gdc.py

示例8: lovasz_hinge_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_hinge_flat(logits, labels):
    """
    Binary Lovasz hinge loss
      logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
      labels: [P] Tensor, binary ground truth labels (0 or 1)
      ignore: label to ignore
    """
    if len(labels) == 0:
        # only void pixels, the gradients should be 0
        return logits.sum() * 0.
    signs = 2. * labels.float() - 1.
    errors = (1. - logits * signs)

    errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
    perm = perm.data
    gt_sorted = labels[perm]
    grad = lovasz_grad(gt_sorted)
    loss = torch.dot(F.elu(errors_sorted), grad)
    return loss 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:21,代码来源:lovasz_losses.py

示例9: lovasz_softmax_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_softmax_flat(probas, labels, only_present=False):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      only_present: average only on classes present in ground truth
    """
    C = probas.size(1)
    losses = []
    for c in range(C):
        fg = (labels == c).float()  # foreground for class c
        if only_present and fg.sum() == 0:
            continue

        errors = (fg - probas[:, c]).abs()
        errors_sorted, perm = torch.sort(errors, 0, descending=True)
        perm = perm.data
        fg_sorted = fg[perm]
        losses.append(torch.dot(errors_sorted, lovasz_grad(fg_sorted)))
    return mean(losses) 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:22,代码来源:lovasz_losses.py

示例10: lovasz_softmax_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_softmax_flat(probas, labels, only_present=False):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      only_present: average only on classes present in ground truth
    """
    C = probas.size(1)
    losses = []
    for c in range(C):
        fg = (labels == c).float() # foreground for class c
        if only_present and fg.sum() == 0:
            continue

        errors = (fg - probas[:, c]).abs()
        errors_sorted, perm = torch.sort(errors, 0, descending=True)
        perm = perm.data
        fg_sorted = fg[perm]
        losses.append(torch.dot(errors_sorted, lovasz_grad(fg_sorted)))
    return mean(losses) 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:22,代码来源:lovash_losses.py

示例11: lovasz_hinge_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_hinge_flat(logits, labels):
    """
    Binary Lovasz hinge loss
      logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
      labels: [P] Tensor, binary ground truth labels (0 or 1)
      ignore: label to ignore
    """
    if len(labels) == 0:
        # only void pixels, the gradients should be 0
        return logits.sum() * 0.
    signs = 2. * labels.float() - 1.
    errors = (1. - logits * Variable(signs))
    errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
    perm = perm.data
    gt_sorted = labels[perm]
    grad = lovasz_grad(gt_sorted)
    loss = torch.dot(F.elu(errors_sorted) + 1, Variable(grad))
    return loss 
开发者ID:lRomul,项目名称:argus-tgs-salt,代码行数:20,代码来源:lovasz.py

示例12: lovasz_softmax_flat

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def lovasz_softmax_flat(probas, labels, only_present=False):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      only_present: average only on classes present in ground truth
    """
    C = probas.size(1)
    losses = []
    for c in range(C):
        fg = (labels == c).float() # foreground for class c
        if only_present and fg.sum() == 0:
            continue
        errors = (Variable(fg) - probas[:, c]).abs()
        errors_sorted, perm = torch.sort(errors, 0, descending=True)
        perm = perm.data
        fg_sorted = fg[perm]
        losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
    return mean(losses) 
开发者ID:lRomul,项目名称:argus-tgs-salt,代码行数:21,代码来源:lovasz.py

示例13: perturb_o_and_get_filtered_rank

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def perturb_o_and_get_filtered_rank(embedding, w, s, r, o, test_size, triplets_to_filter):
    """ Perturb object in the triplets
    """
    num_entities = embedding.shape[0]
    ranks = []
    for idx in range(test_size):
        if idx % 100 == 0:
            print("test triplet {} / {}".format(idx, test_size))
        target_s = s[idx]
        target_r = r[idx]
        target_o = o[idx]
        filtered_o = filter_o(triplets_to_filter, target_s, target_r, target_o, num_entities)
        target_o_idx = int((filtered_o == target_o).nonzero())
        emb_s = embedding[target_s]
        emb_r = w[target_r]
        emb_o = embedding[filtered_o]
        emb_triplet = emb_s * emb_r * emb_o
        scores = torch.sigmoid(torch.sum(emb_triplet, dim=1))
        _, indices = torch.sort(scores, descending=True)
        rank = int((indices == target_o_idx).nonzero())
        ranks.append(rank)
    return torch.LongTensor(ranks) 
开发者ID:dmlc,项目名称:dgl,代码行数:24,代码来源:utils.py

示例14: perturb_s_and_get_filtered_rank

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def perturb_s_and_get_filtered_rank(embedding, w, s, r, o, test_size, triplets_to_filter):
    """ Perturb subject in the triplets
    """
    num_entities = embedding.shape[0]
    ranks = []
    for idx in range(test_size):
        if idx % 100 == 0:
            print("test triplet {} / {}".format(idx, test_size))
        target_s = s[idx]
        target_r = r[idx]
        target_o = o[idx]
        filtered_s = filter_s(triplets_to_filter, target_s, target_r, target_o, num_entities)
        target_s_idx = int((filtered_s == target_s).nonzero())
        emb_s = embedding[filtered_s]
        emb_r = w[target_r]
        emb_o = embedding[target_o]
        emb_triplet = emb_s * emb_r * emb_o
        scores = torch.sigmoid(torch.sum(emb_triplet, dim=1))
        _, indices = torch.sort(scores, descending=True)
        rank = int((indices == target_s_idx).nonzero())
        ranks.append(rank)
    return torch.LongTensor(ranks) 
开发者ID:dmlc,项目名称:dgl,代码行数:24,代码来源:utils.py

示例15: scores_to_ranks

# 需要导入模块: import torch [as 别名]
# 或者: from torch import sort [as 别名]
def scores_to_ranks(scores: torch.Tensor):
    """Convert model output scores into ranks."""
    batch_size, num_rounds, num_options = scores.size()
    scores = scores.view(-1, num_options)

    # sort in descending order - largest score gets highest rank
    sorted_ranks, ranked_idx = scores.sort(1, descending=True)

    # i-th position in ranked_idx specifies which score shall take this
    # position but we want i-th position to have rank of score at that
    # position, do this conversion
    ranks = ranked_idx.clone().fill_(0)
    for i in range(ranked_idx.size(0)):
        for j in range(num_options):
            ranks[i][ranked_idx[i][j]] = j
    # convert from 0-99 ranks to 1-100 ranks
    ranks += 1
    ranks = ranks.view(batch_size, num_rounds, num_options)
    return ranks 
开发者ID:batra-mlp-lab,项目名称:visdial-challenge-starter-pytorch,代码行数:21,代码来源:metrics.py


注:本文中的torch.sort方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。