本文整理汇总了Python中torch.solve方法的典型用法代码示例。如果您正苦于以下问题:Python torch.solve方法的具体用法?Python torch.solve怎么用?Python torch.solve使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.solve方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_solve_qr
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_solve_qr(self, dtype=torch.float64, tol=1e-8):
size = 50
X = torch.rand((size, 2)).to(dtype=dtype)
y = torch.sin(torch.sum(X, 1)).unsqueeze(-1).to(dtype=dtype)
with settings.min_preconditioning_size(0):
noise = torch.DoubleTensor(size).uniform_(math.log(1e-3), math.log(1e-1)).exp_().to(dtype=dtype)
lazy_tsr = RBFKernel().to(dtype=dtype)(X).evaluate_kernel().add_diag(noise)
precondition_qr, _, logdet_qr = lazy_tsr._preconditioner()
F = lazy_tsr._piv_chol_self
M = noise.diag() + F.matmul(F.t())
x_exact = torch.solve(y, M)[0]
x_qr = precondition_qr(y)
self.assertTrue(approx_equal(x_exact, x_qr, tol))
logdet = 2 * torch.cholesky(M).diag().log().sum(-1)
self.assertTrue(approx_equal(logdet, logdet_qr, tol))
示例2: test_solve_qr_constant_noise
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_solve_qr_constant_noise(self, dtype=torch.float64, tol=1e-8):
size = 50
X = torch.rand((size, 2)).to(dtype=dtype)
y = torch.sin(torch.sum(X, 1)).unsqueeze(-1).to(dtype=dtype)
with settings.min_preconditioning_size(0):
noise = 1e-2 * torch.ones(size, dtype=dtype)
lazy_tsr = RBFKernel().to(dtype=dtype)(X).evaluate_kernel().add_diag(noise)
precondition_qr, _, logdet_qr = lazy_tsr._preconditioner()
F = lazy_tsr._piv_chol_self
M = noise.diag() + F.matmul(F.t())
x_exact = torch.solve(y, M)[0]
x_qr = precondition_qr(y)
self.assertTrue(approx_equal(x_exact, x_qr, tol))
logdet = 2 * torch.cholesky(M).diag().log().sum(-1)
self.assertTrue(approx_equal(logdet, logdet_qr, tol))
示例3: test_example
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_example(self):
n, m = 2, 3
x = cp.Variable(n)
A = cp.Parameter((m, n))
b = cp.Parameter(m)
constraints = [x >= 0]
objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
problem = cp.Problem(objective, constraints)
assert problem.is_dpp()
cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])
A_tch = torch.randn(m, n, requires_grad=True)
b_tch = torch.randn(m, requires_grad=True)
# solve the problem
solution, = cvxpylayer(A_tch, b_tch)
# compute the gradient of the sum of the solution with respect to A, b
solution.sum().backward()
示例4: proju_original
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def proju_original(x, u):
import geoopt.linalg as linalg
# takes batch data
# batch_size, n, _ = x.shape
x_shape = x.shape
x = x.reshape(-1, x_shape[-2], x_shape[-1])
batch_size, n = x.shape[0:2]
e = torch.ones(batch_size, n, 1, dtype=x.dtype)
I = torch.unsqueeze(torch.eye(x.shape[-1], dtype=x.dtype), 0).repeat(
batch_size, 1, 1
)
mu = x * u
A = linalg.block_matrix([[I, x], [torch.transpose(x, 1, 2), I]])
B = A[:, :, 1:]
b = torch.cat(
[
torch.sum(mu, dim=2, keepdim=True),
torch.transpose(torch.sum(mu, dim=1, keepdim=True), 1, 2),
],
dim=1,
)
zeta, _ = torch.solve(B.transpose(1, 2) @ (b - A[:, :, 0:1]), B.transpose(1, 2) @ B)
alpha = torch.cat(
[torch.ones(batch_size, 1, 1, dtype=x.dtype), zeta[:, 0 : n - 1]], dim=1
)
beta = zeta[:, n - 1 : 2 * n - 1]
rgrad = mu - (alpha @ e.transpose(1, 2) + e @ beta.transpose(1, 2)) * x
rgrad = rgrad.reshape(x_shape)
return rgrad
示例5: proj_tangent
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def proj_tangent(x, u):
assert x.shape[-2:] == u.shape[-2:], "Wrong shapes"
x, u = torch.broadcast_tensors(x, u)
x_shape = x.shape
x = x.reshape(-1, x_shape[-2], x_shape[-1])
u = u.reshape(-1, x_shape[-2], x_shape[-1])
xt = x.transpose(-1, -2)
batch_size, n = x.shape[0:2]
I = torch.eye(n, dtype=x.dtype, device=x.device)
I = I.expand_as(x)
mu = x * u
A = linalg.block_matrix([[I, x], [xt, I]])
B = A[:, :, 1:]
z1 = mu.sum(dim=-1).unsqueeze(-1)
zt1 = mu.sum(dim=-2).unsqueeze(-1)
b = torch.cat([z1, zt1], dim=1,)
rhs = B.transpose(1, 2) @ (b - A[:, :, 0:1])
lhs = B.transpose(1, 2) @ B
zeta, _ = torch.solve(rhs, lhs)
alpha = torch.cat(
[torch.ones(batch_size, 1, 1, dtype=x.dtype), zeta[:, 0 : n - 1]], dim=1
)
beta = zeta[:, n - 1 : 2 * n - 1]
rgrad = mu - (alpha + beta.transpose(-1, -2)) * x
rgrad = rgrad.reshape(x_shape)
return rgrad
示例6: _transp_follow_one
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def _transp_follow_one(
self, x: torch.Tensor, v: torch.Tensor, *, u: torch.Tensor
) -> torch.Tensor:
a = self._amat(x, u)
rhs = v + 1 / 2 * a @ v
lhs = -1 / 2 * a
lhs[..., torch.arange(a.shape[-2]), torch.arange(x.shape[-2])] += 1
qv, _ = torch.solve(rhs, lhs)
return qv
示例7: kalman_gain
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def kalman_gain(covariance: Tensor, system_covariance: Tensor, H: Tensor):
Ht = H.permute(0, 2, 1)
covs_measured = torch.bmm(covariance, Ht)
A = system_covariance.permute(0, 2, 1)
B = covs_measured.permute(0, 2, 1)
Kt, _ = torch.solve(B, A)
K = Kt.permute(0, 2, 1)
return K
示例8: _test_minres
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def _test_minres(self, rhs_shape, shifts=None, matrix_batch_shape=torch.Size([])):
size = rhs_shape[-2] if len(rhs_shape) > 1 else rhs_shape[-1]
rhs = torch.randn(rhs_shape, dtype=torch.float64)
matrix = torch.randn(*matrix_batch_shape, size, size, dtype=torch.float64)
matrix = matrix.matmul(matrix.transpose(-1, -2))
matrix.div_(matrix.norm())
matrix.add_(torch.eye(size, dtype=torch.float64).mul_(1e-1))
# Compute solves with minres
if shifts is not None:
shifts = shifts.type_as(rhs)
with gpytorch.settings.minres_tolerance(1e-6):
solves = minres(matrix, rhs=rhs, value=-1, shifts=shifts)
# Make sure that we're not getting weird batch dim effects
while matrix.dim() < len(rhs_shape):
matrix = matrix.unsqueeze(0)
# Maybe add shifts
if shifts is not None:
matrix = matrix - torch.mul(
torch.eye(size, dtype=torch.float64), shifts.view(*shifts.shape, *[1 for _ in matrix.shape])
)
# Compute solves exactly
actual, _ = torch.solve(rhs.unsqueeze(-1) if rhs.dim() == 1 else rhs, -matrix)
if rhs.dim() == 1:
actual = actual.squeeze(-1)
self.assertAllClose(solves, actual, atol=1e-3, rtol=1e-4)
示例9: log_prob
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def log_prob(self, X):
logdetp = torch.logdet(X)
pinvK = torch.solve(self.K, X)[0]
trpinvK = torch.diagonal(pinvK, dim1=-2, dim2=-1).sum(-1) # trace in batch mode
return self.C - 0.5 * ((self.nu + 2 * self.n) * logdetp + trpinvK)
示例10: test_least_squares
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_least_squares(self):
set_seed(243)
m, n = 100, 20
A = cp.Parameter((m, n))
b = cp.Parameter(m)
x = cp.Variable(n)
obj = cp.sum_squares(A@x - b) + cp.sum_squares(x)
prob = cp.Problem(cp.Minimize(obj))
prob_th = CvxpyLayer(prob, [A, b], [x])
A_th = torch.randn(m, n).double().requires_grad_()
b_th = torch.randn(m).double().requires_grad_()
x = prob_th(A_th, b_th, solver_args={"eps": 1e-10})[0]
def lstsq(
A,
b): return torch.solve(
(A_th.t() @ b_th).unsqueeze(1),
A_th.t() @ A_th +
torch.eye(n).double())[0]
x_lstsq = lstsq(A_th, b_th)
grad_A_cvxpy, grad_b_cvxpy = grad(x.sum(), [A_th, b_th])
grad_A_lstsq, grad_b_lstsq = grad(x_lstsq.sum(), [A_th, b_th])
self.assertAlmostEqual(
torch.norm(
grad_A_cvxpy -
grad_A_lstsq).item(),
0.0)
self.assertAlmostEqual(
torch.norm(
grad_b_cvxpy -
grad_b_lstsq).item(),
0.0)
示例11: test_broadcasting
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_broadcasting(self):
set_seed(243)
n_batch, m, n = 2, 100, 20
A = cp.Parameter((m, n))
b = cp.Parameter(m)
x = cp.Variable(n)
obj = cp.sum_squares(A@x - b) + cp.sum_squares(x)
prob = cp.Problem(cp.Minimize(obj))
prob_th = CvxpyLayer(prob, [A, b], [x])
A_th = torch.randn(m, n).double().requires_grad_()
b_th = torch.randn(m).double().unsqueeze(0).repeat(n_batch, 1) \
.requires_grad_()
b_th_0 = b_th[0]
x = prob_th(A_th, b_th, solver_args={"eps": 1e-10})[0]
def lstsq(
A,
b): return torch.solve(
(A.t() @ b).unsqueeze(1),
A.t() @ A +
torch.eye(n).double())[0]
x_lstsq = lstsq(A_th, b_th_0)
grad_A_cvxpy, grad_b_cvxpy = grad(x.sum(), [A_th, b_th])
grad_A_lstsq, grad_b_lstsq = grad(x_lstsq.sum(), [A_th, b_th_0])
self.assertAlmostEqual(
torch.norm(
grad_A_cvxpy / n_batch -
grad_A_lstsq).item(),
0.0)
self.assertAlmostEqual(
torch.norm(
grad_b_cvxpy[0] -
grad_b_lstsq).item(),
0.0)
示例12: test_basic_gp
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def test_basic_gp(self):
set_seed(243)
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
z = cp.Variable(pos=True)
a = cp.Parameter(pos=True, value=2.0)
b = cp.Parameter(pos=True, value=1.0)
c = cp.Parameter(value=0.5)
objective_fn = 1/(x*y*z)
constraints = [a*(x*y + x*z + y*z) <= b, x >= y**c]
problem = cp.Problem(cp.Minimize(objective_fn), constraints)
problem.solve(cp.SCS, gp=True, eps=1e-12)
layer = CvxpyLayer(
problem, parameters=[a, b, c], variables=[x, y, z], gp=True)
a_tch = torch.tensor(2.0, requires_grad=True)
b_tch = torch.tensor(1.0, requires_grad=True)
c_tch = torch.tensor(0.5, requires_grad=True)
with torch.no_grad():
x_tch, y_tch, z_tch = layer(a_tch, b_tch, c_tch)
self.assertAlmostEqual(x.value, x_tch.detach().numpy(), places=5)
self.assertAlmostEqual(y.value, y_tch.detach().numpy(), places=5)
self.assertAlmostEqual(z.value, z_tch.detach().numpy(), places=5)
torch.autograd.gradcheck(lambda a, b, c: layer(
a, b, c, solver_args={
"eps": 1e-12, "acceleration_lookback": 0})[0].sum(),
(a_tch, b_tch, c_tch), atol=1e-3, rtol=1e-3)
示例13: fit
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def fit(self):
if self.readout_training in {'gd', 'svd'}:
return
if self.readout_training == 'cholesky':
W = torch.solve(self.XTy,
self.XTX + self.lambda_reg * torch.eye(
self.XTX.size(0), device=self.XTX.device))[0].t()
self.XTX = None
self.XTy = None
self.readout.bias = nn.Parameter(W[:, 0])
self.readout.weight = nn.Parameter(W[:, 1:])
elif self.readout_training == 'inv':
I = (self.lambda_reg * torch.eye(self.XTX.size(0))).to(
self.XTX.device)
A = self.XTX + I
if torch.det(A) != 0:
W = torch.mm(torch.inverse(A), self.XTy).t()
else:
pinv = torch.pinverse(A)
W = torch.mm(pinv, self.XTy).t()
self.readout.bias = nn.Parameter(W[:, 0])
self.readout.weight = nn.Parameter(W[:, 1:])
self.XTX = None
self.XTy = None
示例14: solve_interpolation
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def solve_interpolation(train_points, train_values, order, regularization_weight):
b, n, d = train_points.shape
k = train_values.shape[-1]
# First, rename variables so that the notation (c, f, w, v, A, B, etc.)
# follows https://en.wikipedia.org/wiki/Polyharmonic_spline.
# To account for python style guidelines we use
# matrix_a for A and matrix_b for B.
c = train_points
f = train_values.float()
matrix_a = phi(cross_squared_distance_matrix(c, c), order).unsqueeze(0) # [b, n, n]
# if regularization_weight > 0:
# batch_identity_matrix = array_ops.expand_dims(
# linalg_ops.eye(n, dtype=c.dtype), 0)
# matrix_a += regularization_weight * batch_identity_matrix
# Append ones to the feature values for the bias term in the linear model.
ones = torch.ones(1, dtype=train_points.dtype).view([-1, 1, 1])
matrix_b = torch.cat((c, ones), 2).float() # [b, n, d + 1]
# [b, n + d + 1, n]
left_block = torch.cat((matrix_a, torch.transpose(matrix_b, 2, 1)), 1)
num_b_cols = matrix_b.shape[2] # d + 1
# In Tensorflow, zeros are used here. Pytorch gesv fails with zeros for some reason we don't understand.
# So instead we use very tiny randn values (variance of one, zero mean) on one side of our multiplication.
lhs_zeros = torch.randn((b, num_b_cols, num_b_cols)) / 1e10
right_block = torch.cat((matrix_b, lhs_zeros),
1) # [b, n + d + 1, d + 1]
lhs = torch.cat((left_block, right_block),
2) # [b, n + d + 1, n + d + 1]
rhs_zeros = torch.zeros((b, d + 1, k), dtype=train_points.dtype).float()
rhs = torch.cat((f, rhs_zeros), 1) # [b, n + d + 1, k]
# Then, solve the linear system and unpack the results.
X, LU = torch.solve(rhs, lhs)
w = X[:, :n, :]
v = X[:, n:, :]
return w, v
示例15: _warp_coordinate_generate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import solve [as 别名]
def _warp_coordinate_generate(depth_maps_1, img_masks, translation_vectors, rotation_matrices, intrinsic_matrices):
# Generate a meshgrid for each depth map to calculate value
num_batch, height, width, channels = depth_maps_1.shape
y_grid, x_grid = torch.meshgrid(
[torch.arange(start=0, end=height, dtype=torch.float32).cuda(),
torch.arange(start=0, end=width, dtype=torch.float32).cuda()])
x_grid = x_grid.view(1, height, width, 1)
y_grid = y_grid.view(1, height, width, 1)
ones_grid = torch.ones((1, height, width, 1), dtype=torch.float32).cuda()
# intrinsic_matrix_inverse = intrinsic_matrix.inverse()
eye = torch.eye(3).float().cuda().view(1, 3, 3).expand(intrinsic_matrices.shape[0], -1, -1)
intrinsic_matrices_inverse, _ = torch.solve(eye, intrinsic_matrices)
rotation_matrices_inverse = rotation_matrices.transpose(1, 2)
# The following is when we have different intrinsic matrices for samples within a batch
temp_mat = torch.bmm(intrinsic_matrices, rotation_matrices_inverse)
W = torch.bmm(temp_mat, -translation_vectors)
M = torch.bmm(temp_mat, intrinsic_matrices_inverse)
mesh_grid = torch.cat((x_grid, y_grid, ones_grid), dim=-1).view(height, width, 3, 1)
intermediate_result = torch.matmul(M.view(-1, 1, 1, 3, 3), mesh_grid).view(-1, height, width, 3)
depth_maps_2_calculate = W.view(-1, 3).narrow(dim=-1, start=2, length=1).view(-1, 1, 1, 1) + torch.mul(
depth_maps_1,
intermediate_result.narrow(dim=-1, start=2, length=1).view(-1, height,
width, 1))
# expand operation doesn't allocate new memory (repeat does)
depth_maps_2_calculate = torch.tensor(1.0e30).float().cuda() * (torch.tensor(1.0).float().cuda() - img_masks) + \
img_masks * depth_maps_2_calculate
# This is the source coordinate in coordinate system 2 but ordered in coordinate system 1 in order to warp image 2 to coordinate system 1
u_2 = (W.view(-1, 3).narrow(dim=-1, start=0, length=1).view(-1, 1, 1, 1) + torch.mul(depth_maps_1,
intermediate_result.narrow(
dim=-1, start=0,
length=1).view(-1,
height,
width,
1))) / depth_maps_2_calculate
v_2 = (W.view(-1, 3).narrow(dim=-1, start=1, length=1).view(-1, 1, 1, 1) + torch.mul(depth_maps_1,
intermediate_result.narrow(
dim=-1, start=1,
length=1).view(-1,
height,
width,
1))) / depth_maps_2_calculate
return [u_2, v_2]
# Optical flow for frame 1 to frame 2