本文整理汇总了Python中torch.sigmoid方法的典型用法代码示例。如果您正苦于以下问题:Python torch.sigmoid方法的具体用法?Python torch.sigmoid怎么用?Python torch.sigmoid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.sigmoid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self, src, tgt, src_mask, tgt_mask):
"""
Take in and process masked src and target sequences.
"""
memory = self.encode(src, src_mask) # (batch_size, max_src_seq, d_model)
# attented_mem=self.attention(memory,memory,memory,src_mask)
# memory=attented_mem
score = self.attention(memory, memory, src_mask)
attent_memory = score.bmm(memory)
# memory=self.linear(torch.cat([memory,attent_memory],dim=-1))
memory, _ = self.gru(attented_mem)
'''
score=torch.sigmoid(self.linear(memory))
memory=memory*score
'''
latent = torch.sum(memory, dim=1) # (batch_size, d_model)
logit = self.decode(latent.unsqueeze(1), tgt, tgt_mask) # (batch_size, max_tgt_seq, d_model)
# logit,_=self.gru_decoder(logit)
prob = self.generator(logit) # (batch_size, max_seq, vocab_size)
return latent, prob
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self, inputs):
inputs = list(inputs)
assert len(inputs) == len(self.in_channels) + 1 # +1 for input image
img = inputs.pop(0)
# FPN forward
x = super().forward(tuple(inputs))
for rfp_idx in range(self.rfp_steps - 1):
rfp_feats = [x[0]] + list(
self.rfp_aspp(x[i]) for i in range(1, len(x)))
x_idx = self.rfp_modules[rfp_idx].rfp_forward(img, rfp_feats)
# FPN forward
x_idx = super().forward(x_idx)
x_new = []
for ft_idx in range(len(x_idx)):
add_weight = torch.sigmoid(self.rfp_weight(x_idx[ft_idx]))
x_new.append(add_weight * x_idx[ft_idx] +
(1 - add_weight) * x[ft_idx])
x = x_new
return x
示例3: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self,iput):
bin_a=None
level1_rep=None
[batch_size,_,_]=iput.size()
for hm,hm_encdr in enumerate(self.rnn_hms):
hmod=iput[:,:,hm].contiguous()
hmod=torch.t(hmod).unsqueeze(2)
op,a= hm_encdr(hmod)
if level1_rep is None:
level1_rep=op
bin_a=a
else:
level1_rep=torch.cat((level1_rep,op),1)
bin_a=torch.cat((bin_a,a),1)
level1_rep=level1_rep.permute(1,0,2)
final_rep_1,hm_level_attention_1=self.hm_level_rnn_1(level1_rep)
final_rep_1=final_rep_1.squeeze(1)
prediction_m=((self.fdiff1_1(final_rep_1)))
return torch.sigmoid(prediction_m)
示例4: plot_wh_methods
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi=200)
示例5: fuse_prob
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def fuse_prob(self, x_emb, dec_logit):
''' Takes context and decoder logit to perform word embedding fusion '''
# Compute distribution for dec/emb
if self.fuse_normalize:
emb_logit = nn.functional.linear(nn.functional.normalize(x_emb, dim=-1),
nn.functional.normalize(self.emb_table.weight, dim=-1))
else:
emb_logit = nn.functional.linear(x_emb, self.emb_table.weight)
emb_prob = (nn.functional.relu(self.temp)*emb_logit).softmax(dim=-1)
dec_prob = dec_logit.softmax(dim=-1)
# Mix distribution
if self.fuse_learnable:
fused_prob = (1-torch.sigmoid(self.fuse_lambda))*dec_prob +\
torch.sigmoid(self.fuse_lambda)*emb_prob
else:
fused_prob = (1-self.fuse_lambda)*dec_prob + \
self.fuse_lambda*emb_prob
# Log-prob
log_fused_prob = (fused_prob+self.eps).log()
return log_fused_prob
示例6: logits_nll_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def logits_nll_loss(input, target, weight=None, reduction='mean'):
"""logits_nll_loss
Different from nll loss, this is for sigmoid based loss.
The difference is this will add along C(class) dim.
"""
assert input.dim() == 2, 'Input shape should be (B, C).'
if input.size(0) != target.size(0):
raise ValueError(
'Expected input batch_size ({}) to match target batch_size ({}).' .format(
input.size(0), target.size(0)))
ret = input.sum(dim=-1)
if weight is not None:
ret = _batch_weight(weight, target) * ret
return reducing(ret, reduction)
示例7: evo_norm
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def evo_norm(x, prefix, running_var, v, weight, bias,
training, momentum, eps=0.1, groups=32):
if prefix == 'b0':
if training:
var = torch.var(x, dim=(0, 2, 3), keepdim=True)
running_var.mul_(momentum)
running_var.add_((1 - momentum) * var)
else:
var = running_var
if v is not None:
den = torch.max((var + eps).sqrt(), v * x + instance_std(x, eps))
x = x / den * weight + bias
else:
x = x * weight + bias
else:
if v is not None:
x = x * torch.sigmoid(v * x) / group_std(x,
groups, eps) * weight + bias
else:
x = x * weight + bias
return x
示例8: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self):
""" Calculate loss:
$L(sigma) = (||Phi(embed + epsilon) - Phi(embed)||_2^2)
// (regularization^2) - rate * log(sigma)$
:return: a scalar, the target loss.
:rtype: torch.FloatTensor
"""
ratios = torch.sigmoid(self.ratio) # S * 1
x = self.input_embeddings + 0.0
x_tilde = (
x
+ ratios
* torch.randn(self.input_size, self.input_dimension).to(x.device)
* self.scale
) # S * D
s = self.Phi(x) # D or S * D
s_tilde = self.Phi(x_tilde)
loss = (s_tilde - s) ** 2
if self.regular is not None:
loss = torch.mean(loss / self.regular ** 2)
else:
loss = torch.mean(loss) / torch.mean(s ** 2)
return loss - torch.mean(torch.log(ratios)) * self.rate
示例9: predict
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def predict(self, state):
example, kb = self.gen_example(state)
feature = self.gen_feature(example)
input_ids = torch.tensor([feature.input_ids], dtype=torch.long).to(self.device)
input_masks = torch.tensor([feature.input_mask], dtype=torch.long).to(self.device)
segment_ids = torch.tensor([feature.segment_ids], dtype=torch.long).to(self.device)
with torch.no_grad():
logits = self.model(input_ids, segment_ids, input_masks, labels=None)
logits = torch.sigmoid(logits)
preds = (logits > 0.4).float()
preds_numpy = preds.cpu().nonzero().squeeze().numpy()
# for i in preds_numpy:
# if i < 10:
# print(Constants.domains[i], end=' ')
# elif i < 17:
# print(Constants.functions[i-10], end=' ')
# else:
# print(Constants.arguments[i-17], end=' ')
# print()
return preds, kb
示例10: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self, src_seq, src_pos, act_vocab_id):
# -- Prepare masks
slf_attn_mask = get_attn_key_pad_mask(seq_k=src_seq, seq_q=src_seq)
non_pad_mask = get_non_pad_mask(src_seq)
# -- Forward Word Embedding
enc_output = self.src_word_emb(src_seq) + self.position_enc(src_pos)
# -- Forward Ontology Embedding
ontology_embedding = self.src_word_emb(act_vocab_id)
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(
enc_output,
non_pad_mask=non_pad_mask,
slf_attn_mask=slf_attn_mask)
dot_prod = torch.sum(enc_output[:, :, None, :] * ontology_embedding[None, None, :, :], -1)
#index = length[:, None, None].repeat(1, 1, dot_prod.size(-1))
#pooled_dot_prod = dot_prod.gather(1, index).squeeze()
pooled_dot_prod = dot_prod[:, 0, :]
pooling_likelihood = torch.sigmoid(pooled_dot_prod)
return pooling_likelihood, enc_output
示例11: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self, grad_norm, grad_sign, param_norm, param_sign, loss_norm, hx):
batch_size = grad_norm.size(0)
inputs = torch.stack((grad_norm, grad_sign, param_norm, param_sign, loss_norm.expand(grad_norm.size(0))),
dim=1)
if hx is None:
self.lrs = []
if self.forget_gate:
self.fgs = []
hx = (self.h_0.expand((batch_size, -1)), self.c_0.expand((batch_size, -1)))
h, c = self.lstm(inputs, hx)
if self.layer_norm is not None:
h = self.layer_norm(h)
if self.input_gate:
lr = torch.sigmoid(self.lr_layer(h))
else:
lr = self.output_layer(h)
self.lrs.append(lr.mean().item())
if self.forget_gate:
fg = torch.sigmoid(self.fg_layer(h))
self.fgs.append(fg.mean().item())
return lr, fg, (h, c)
else:
return lr, (h, c)
示例12: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self,h,emb):
sbatch,nsq,lchunk=h.size()
h=h.contiguous()
"""
# Slower version
ws=list(self.adapt_w(emb).view(sbatch,self.ncha,1,self.kw))
bs=list(self.adapt_b(emb))
hs=list(torch.chunk(h,sbatch,dim=0))
out=[]
for hi,wi,bi in zip(hs,ws,bs):
out.append(torch.nn.functional.conv1d(hi,wi,bias=bi,padding=self.kw//2,groups=nsq))
h=torch.cat(out,dim=0)
"""
# Faster version fully using group convolution
w=self.adapt_w(emb).view(-1,1,self.kw)
b=self.adapt_b(emb).view(-1)
h=torch.nn.functional.conv1d(h.view(1,-1,lchunk),w,bias=b,padding=self.kw//2,groups=sbatch*nsq).view(sbatch,self.ncha,lchunk)
#"""
h=self.net.forward(h)
s,m=torch.chunk(h,2,dim=1)
s=torch.sigmoid(s+2)+1e-7
return s,m
########################################################################################################################
########################################################################################################################
示例13: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def forward(self, x):
"""
:param x: Long tensor of size ``(batch_size, num_fields)``
"""
embed_x = self.embedding(x)
atten_x = self.atten_embedding(embed_x)
cross_term = atten_x.transpose(0, 1)
for self_attn in self.self_attns:
cross_term, _ = self_attn(cross_term, cross_term, cross_term)
cross_term = cross_term.transpose(0, 1)
if self.has_residual:
V_res = self.V_res_embedding(embed_x)
cross_term += V_res
cross_term = F.relu(cross_term).contiguous().view(-1, self.atten_output_dim)
x = self.linear(x) + self.attn_fc(cross_term) + self.mlp(embed_x.view(-1, self.embed_output_dim))
return torch.sigmoid(x.squeeze(1))
示例14: swish
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def swish(x):
return x * torch.sigmoid(x)
示例15: BCE_bootstrap_with_logits
# 需要导入模块: import torch [as 别名]
# 或者: from torch import sigmoid [as 别名]
def BCE_bootstrap_with_logits(input, target, ishard=False, beta=0.95, weight=None, size_average=True):
r"""Function that measures Binary Cross Entropy between target and output
logits with prediction consistency(bootstrap)
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
ishard: Choose soft/hard bootstrap mode
beta: Weight between ``gt`` label and prediction. In paper, 0.8 for hard and 0.95 for soft
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch. Default: ``True``
Examples::
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
>>> target = autograd.Variable(torch.FloatTensor(3).random_(2))
>>> loss = BCE_bootstrap_with_logits(input, target)
>>> loss.backward()
"""
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
input_prob = torch.sigmoid(input)
if ishard:
target = target * beta + (input_prob>0.5) * (1-beta)
else:
target = target * beta + input_prob * (1-beta)
print(target)
max_val = (-input).clamp(min=0)
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
if weight is not None:
loss = loss * weight
if size_average:
return loss.mean()
else:
return loss.sum()
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:43,代码来源:loss_function.py