本文整理汇总了Python中torch.set_rng_state方法的典型用法代码示例。如果您正苦于以下问题:Python torch.set_rng_state方法的具体用法?Python torch.set_rng_state怎么用?Python torch.set_rng_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.set_rng_state方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: seed_all_rng
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def seed_all_rng(seed=None):
"""
Set the random seed for the RNG in torch, numpy and python.
Args:
seed (int): if None, will use a strong random seed.
"""
if seed is None:
seed = (
os.getpid()
+ int(datetime.now().strftime("%S%f"))
+ int.from_bytes(os.urandom(2), "big")
)
logger = logging.getLogger(__name__)
logger.info("Using a generated random seed {}".format(seed))
np.random.seed(seed)
torch.set_rng_state(torch.manual_seed(seed).get_state())
random.seed(seed)
示例2: __getitem__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
# create random image that is consistent with the index id
rng_state = torch.get_rng_state()
torch.manual_seed(index + self.random_offset)
img = torch.randn(*self.image_size)
target = torch.Tensor(1).random_(0, self.num_classes)[0]
torch.set_rng_state(rng_state)
# convert to PIL Image
img = transforms.ToPILImage()(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
示例3: restore_rng_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def restore_rng_states(device: torch.device,
rng_states: Deque[RNGStates],
) -> Generator[None, None, None]:
""":meth:`Recompute.backward` restores the random number generator states
captured by :func:`save_rng_states` within its context.
.. seealso:: :ref:`Referential Transparency`
"""
cpu_rng_state, gpu_rng_state = rng_states.pop()
gpu_devices: List[torch.device] = []
if device.type == 'cuda':
gpu_devices.append(device)
with torch.random.fork_rng(gpu_devices):
torch.set_rng_state(cpu_rng_state)
if gpu_rng_state is not None:
torch.cuda.set_rng_state(gpu_rng_state, device)
yield
示例4: test_get_set_device_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def test_get_set_device_states(device, enabled):
shape = (1, 1, 10, 10)
if not torch.cuda.is_available() and device == 'cuda':
pytest.skip('This test requires a GPU to be available')
X = torch.ones(shape, device=device)
devices, states = get_device_states(X)
assert len(states) == (1 if device == 'cuda' else 0)
assert len(devices) == (1 if device == 'cuda' else 0)
cpu_rng_state = torch.get_rng_state()
Y = X * torch.rand(shape, device=device)
with torch.random.fork_rng(devices=devices, enabled=True):
if enabled:
if device == 'cpu':
torch.set_rng_state(cpu_rng_state)
else:
set_device_states(devices=devices, states=states)
Y2 = X * torch.rand(shape, device=device)
assert torch.equal(Y, Y2) == enabled
示例5: backward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), please use .backward() if possible")
inputs = ctx.saved_tensors
# Stash the surrounding rng state, and mimic the state that was
# present at this time during forward. Restore the surrouding state
# when we're done.
rng_devices = [torch.cuda.current_device()] if ctx.had_cuda_in_fwd else []
with torch.random.fork_rng(devices=rng_devices, enabled=preserve_rng_state):
if preserve_rng_state:
torch.set_rng_state(ctx.fwd_cpu_rng_state)
if ctx.had_cuda_in_fwd:
torch.cuda.set_rng_state(ctx.fwd_cuda_rng_state)
detached_inputs = detach_variable(inputs)
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
torch.autograd.backward(outputs, args)
return (None,) + tuple(inp.grad for inp in detached_inputs)
示例6: load_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def load_states(self, epoch, device):
"""Loads the states from the checkpoint associated with ``epoch``.
Args:
epoch (int): ``--epoch`` command argument.
device (str): ``--device`` command argument.
"""
checkpoint_data = self.experiment.checkpoint_load(epoch, device)
if isinstance(self.model, torch.nn.DataParallel):
self.model.module.load_state_dict(checkpoint_data['model'])
else:
self.model.load_state_dict(checkpoint_data['model'])
self.optimizer.load_state_dict(checkpoint_data['optimizer'])
random.setstate(checkpoint_data['random_states'][0])
np.random.set_state(checkpoint_data['random_states'][1])
torch.set_rng_state(checkpoint_data['random_states'][2].cpu())
if torch.cuda.is_available() and checkpoint_data['random_states'][3] is not None:
torch.cuda.set_rng_state(checkpoint_data['random_states'][3].cpu())
self.counters = checkpoint_data['counters']
if 'losses' in checkpoint_data: # Compatibility purposes until next release
self.losses_epoch = checkpoint_data['losses']
else:
self.losses_epoch = checkpoint_data['losses_epoch']
self.losses_it = checkpoint_data['losses_it']
self.load_states_others(checkpoint_data)
示例7: seed_all_rng
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def seed_all_rng(seed=None):
"""
Set the random seed for the RNG in torch, numpy and python.
Args:
seed (int): if None, will use a strong random seed.
"""
if seed is None:
seed = (
os.getpid()
+ int(datetime.now().strftime("%S%f"))
+ int.from_bytes(os.urandom(2), "big")
)
logger = logging.getLogger(__name__)
logger.info("Using a generated random seed {}".format(seed))
np.random.seed(seed)
torch.set_rng_state(torch.manual_seed(seed).get_state())
random.seed(seed)
# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
示例8: loadSeed
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def loadSeed(loadDir):
"""
Loads the states and seed saved in a specified path
Inputs:
loadDir (path): where to look for thee seed to load; it is expected that
the appropriate file within loadDir is named 'randomSeedUsed.pkl'
Obs.: The file 'randomSeedUsed.pkl' should contain a list structured as
follows. The length of this list is equal to the number of modules whose
states were saved (torch, numpy, etc.). Each element in this list is a
dictionary. The dictionary has three keys: 'module' with the name of
the module in string format ('numpy' or 'torch', for example), 'state'
with the saved generator state and, if corresponds, 'seed' with the
specific seed for the generator (note that torch has both state and
seed, but numpy only has state)
"""
pathToSeed = os.path.join(loadDir, 'randomSeedUsed.pkl')
with open(pathToSeed, 'rb') as seedFile:
randomStates = pickle.load(seedFile)
randomStates = randomStates['randomStates']
for module in randomStates:
thisModule = module['module']
if thisModule == 'numpy':
np.random.RandomState().set_state(module['state'])
elif thisModule == 'torch':
torch.set_rng_state(module['state'])
torch.manual_seed(module['seed'])
示例9: with_torch_seed
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def with_torch_seed(seed):
assert isinstance(seed, int)
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state()
set_torch_seed(seed)
yield
torch.set_rng_state(rng_state)
torch.cuda.set_rng_state(cuda_rng_state)
示例10: torch_seed
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def torch_seed(seed: Optional[int]):
"""Context manager which seeds the PyTorch PRNG with the specified seed and
restores the state afterward. Setting seed to None is equivalent to running
the code without the context manager."""
if seed is None:
yield
return
state = torch.get_rng_state()
torch.manual_seed(seed)
try:
yield
finally:
torch.set_rng_state(state)
示例11: write_dummy_file
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def write_dummy_file(filename, num_examples, maxlen):
rng_state = torch.get_rng_state()
torch.manual_seed(0)
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(filename, "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
torch.set_rng_state(rng_state)
示例12: __exit__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def __exit__(self, type, value, traceback):
torch.set_rng_state(self.old_rng_state)
# Conditional independence is recorded as a plate context at each site.
示例13: set_device_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def set_device_states(devices, states):
for device, state in zip(devices, states):
with torch.cuda.device(device):
torch.cuda.set_rng_state(state)
示例14: load_rng_state
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def load_rng_state(file_name):
rng_state = torch_load(file_name)
torch.set_rng_state(rng_state)
示例15: setstate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def setstate(self, state: np.ndarray) -> None:
return torch.set_rng_state(torch.from_numpy(state))