当前位置: 首页>>代码示例>>Python>>正文


Python torch.set_rng_state方法代码示例

本文整理汇总了Python中torch.set_rng_state方法的典型用法代码示例。如果您正苦于以下问题:Python torch.set_rng_state方法的具体用法?Python torch.set_rng_state怎么用?Python torch.set_rng_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch的用法示例。


在下文中一共展示了torch.set_rng_state方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: seed_all_rng

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def seed_all_rng(seed=None):
    """
    Set the random seed for the RNG in torch, numpy and python.

    Args:
        seed (int): if None, will use a strong random seed.
    """
    if seed is None:
        seed = (
            os.getpid()
            + int(datetime.now().strftime("%S%f"))
            + int.from_bytes(os.urandom(2), "big")
        )
        logger = logging.getLogger(__name__)
        logger.info("Using a generated random seed {}".format(seed))
    np.random.seed(seed)
    torch.set_rng_state(torch.manual_seed(seed).get_state())
    random.seed(seed) 
开发者ID:LikeLy-Journey,项目名称:SegmenTron,代码行数:20,代码来源:env.py

示例2: __getitem__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        # create random image that is consistent with the index id
        rng_state = torch.get_rng_state()
        torch.manual_seed(index + self.random_offset)
        img = torch.randn(*self.image_size)
        target = torch.Tensor(1).random_(0, self.num_classes)[0]
        torch.set_rng_state(rng_state)

        # convert to PIL Image
        img = transforms.ToPILImage()(img)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target 
开发者ID:ZilinGao,项目名称:Global-Second-order-Pooling-Convolutional-Networks,代码行数:25,代码来源:fakedata.py

示例3: restore_rng_states

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def restore_rng_states(device: torch.device,
                       rng_states: Deque[RNGStates],
                       ) -> Generator[None, None, None]:
    """:meth:`Recompute.backward` restores the random number generator states
    captured by :func:`save_rng_states` within its context.

    .. seealso:: :ref:`Referential Transparency`

    """
    cpu_rng_state, gpu_rng_state = rng_states.pop()

    gpu_devices: List[torch.device] = []
    if device.type == 'cuda':
        gpu_devices.append(device)

    with torch.random.fork_rng(gpu_devices):
        torch.set_rng_state(cpu_rng_state)
        if gpu_rng_state is not None:
            torch.cuda.set_rng_state(gpu_rng_state, device)
        yield 
开发者ID:kakaobrain,项目名称:torchgpipe,代码行数:22,代码来源:checkpoint.py

示例4: test_get_set_device_states

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def test_get_set_device_states(device, enabled):
    shape = (1, 1, 10, 10)
    if not torch.cuda.is_available() and device == 'cuda':
        pytest.skip('This test requires a GPU to be available')
    X = torch.ones(shape, device=device)
    devices, states = get_device_states(X)
    assert len(states) == (1 if device == 'cuda' else 0)
    assert len(devices) == (1 if device == 'cuda' else 0)
    cpu_rng_state = torch.get_rng_state()
    Y = X * torch.rand(shape, device=device)
    with torch.random.fork_rng(devices=devices, enabled=True):
        if enabled:
            if device == 'cpu':
                torch.set_rng_state(cpu_rng_state)
            else:
                set_device_states(devices=devices, states=states)
        Y2 = X * torch.rand(shape, device=device)
    assert torch.equal(Y, Y2) == enabled 
开发者ID:silvandeleemput,项目名称:memcnn,代码行数:20,代码来源:test_revop.py

示例5: backward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def backward(ctx, *args):
        if not torch.autograd._is_checkpoint_valid():
            raise RuntimeError("Checkpointing is not compatible with .grad(), please use .backward() if possible")
        inputs = ctx.saved_tensors
        # Stash the surrounding rng state, and mimic the state that was
        # present at this time during forward.  Restore the surrouding state
        # when we're done.
        rng_devices = [torch.cuda.current_device()] if ctx.had_cuda_in_fwd else []
        with torch.random.fork_rng(devices=rng_devices, enabled=preserve_rng_state):
            if preserve_rng_state:
                torch.set_rng_state(ctx.fwd_cpu_rng_state)
                if ctx.had_cuda_in_fwd:
                    torch.cuda.set_rng_state(ctx.fwd_cuda_rng_state)
            detached_inputs = detach_variable(inputs)
            with torch.enable_grad():
                outputs = ctx.run_function(*detached_inputs)

        if isinstance(outputs, torch.Tensor):
            outputs = (outputs,)
        torch.autograd.backward(outputs, args)
        return (None,) + tuple(inp.grad for inp in detached_inputs) 
开发者ID:Lyken17,项目名称:pytorch-memonger,代码行数:23,代码来源:checkpoint.py

示例6: load_states

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def load_states(self, epoch, device):
        """Loads the states from the checkpoint associated with ``epoch``.

        Args:
            epoch (int): ``--epoch`` command argument.
            device (str): ``--device`` command argument.
        """
        checkpoint_data = self.experiment.checkpoint_load(epoch, device)
        if isinstance(self.model, torch.nn.DataParallel):
            self.model.module.load_state_dict(checkpoint_data['model'])
        else:
            self.model.load_state_dict(checkpoint_data['model'])
        self.optimizer.load_state_dict(checkpoint_data['optimizer'])
        random.setstate(checkpoint_data['random_states'][0])
        np.random.set_state(checkpoint_data['random_states'][1])
        torch.set_rng_state(checkpoint_data['random_states'][2].cpu())
        if torch.cuda.is_available() and checkpoint_data['random_states'][3] is not None:
            torch.cuda.set_rng_state(checkpoint_data['random_states'][3].cpu())
        self.counters = checkpoint_data['counters']
        if 'losses' in checkpoint_data:  # Compatibility purposes until next release
            self.losses_epoch = checkpoint_data['losses']
        else:
            self.losses_epoch = checkpoint_data['losses_epoch']
            self.losses_it = checkpoint_data['losses_it']
        self.load_states_others(checkpoint_data) 
开发者ID:davidalvarezdlt,项目名称:skeltorch,代码行数:27,代码来源:runner.py

示例7: seed_all_rng

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def seed_all_rng(seed=None):
    """
    Set the random seed for the RNG in torch, numpy and python.

    Args:
        seed (int): if None, will use a strong random seed.
    """
    if seed is None:
        seed = (
            os.getpid()
            + int(datetime.now().strftime("%S%f"))
            + int.from_bytes(os.urandom(2), "big")
        )
        logger = logging.getLogger(__name__)
        logger.info("Using a generated random seed {}".format(seed))
    np.random.seed(seed)
    torch.set_rng_state(torch.manual_seed(seed).get_state())
    random.seed(seed)


# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path 
开发者ID:facebookresearch,项目名称:detectron2,代码行数:23,代码来源:env.py

示例8: loadSeed

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def loadSeed(loadDir):
    """
    Loads the states and seed saved in a specified path
    
    Inputs:
        loadDir (path): where to look for thee seed to load; it is expected that
            the appropriate file within loadDir is named 'randomSeedUsed.pkl'
    
    Obs.: The file 'randomSeedUsed.pkl' should contain a list structured as
        follows. The length of this list is equal to the number of modules whose
        states were saved (torch, numpy, etc.). Each element in this list is a
        dictionary. The dictionary has three keys: 'module' with the name of 
        the module in string format ('numpy' or 'torch', for example), 'state' 
        with the saved generator state and, if corresponds, 'seed' with the 
        specific seed for the generator (note that torch has both state and 
        seed, but numpy only has state)
    """
    pathToSeed = os.path.join(loadDir, 'randomSeedUsed.pkl')
    with open(pathToSeed, 'rb') as seedFile:
        randomStates = pickle.load(seedFile)
        randomStates = randomStates['randomStates']
    for module in randomStates:
        thisModule = module['module']
        if thisModule == 'numpy':
            np.random.RandomState().set_state(module['state'])
        elif thisModule == 'torch':
            torch.set_rng_state(module['state'])
            torch.manual_seed(module['seed']) 
开发者ID:alelab-upenn,项目名称:graph-neural-networks,代码行数:30,代码来源:miscTools.py

示例9: with_torch_seed

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def with_torch_seed(seed):
    assert isinstance(seed, int)
    rng_state = torch.get_rng_state()
    cuda_rng_state = torch.cuda.get_rng_state()
    set_torch_seed(seed)
    yield
    torch.set_rng_state(rng_state)
    torch.cuda.set_rng_state(cuda_rng_state) 
开发者ID:pytorch,项目名称:fairseq,代码行数:10,代码来源:utils.py

示例10: torch_seed

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def torch_seed(seed: Optional[int]):
    """Context manager which seeds the PyTorch PRNG with the specified seed and
    restores the state afterward. Setting seed to None is equivalent to running
    the code without the context manager."""
    if seed is None:
        yield
        return
    state = torch.get_rng_state()
    torch.manual_seed(seed)
    try:
        yield
    finally:
        torch.set_rng_state(state) 
开发者ID:facebookresearch,项目名称:ClassyVision,代码行数:15,代码来源:util.py

示例11: write_dummy_file

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def write_dummy_file(filename, num_examples, maxlen):
    rng_state = torch.get_rng_state()
    torch.manual_seed(0)
    data = torch.rand(num_examples * maxlen)
    data = 97 + torch.floor(26 * data).int()
    with open(filename, "w") as h:
        offset = 0
        for _ in range(num_examples):
            ex_len = random.randint(1, maxlen)
            ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
            print(ex_str, file=h)
            offset += ex_len
    torch.set_rng_state(rng_state) 
开发者ID:pytorch,项目名称:translate,代码行数:15,代码来源:utils.py

示例12: __exit__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def __exit__(self, type, value, traceback):
        torch.set_rng_state(self.old_rng_state)


# Conditional independence is recorded as a plate context at each site. 
开发者ID:pyro-ppl,项目名称:funsor,代码行数:7,代码来源:minipyro.py

示例13: set_device_states

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def set_device_states(devices, states):
    for device, state in zip(devices, states):
        with torch.cuda.device(device):
            torch.cuda.set_rng_state(state) 
开发者ID:silvandeleemput,项目名称:memcnn,代码行数:6,代码来源:revop.py

示例14: load_rng_state

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def load_rng_state(file_name):
    rng_state = torch_load(file_name)
    torch.set_rng_state(rng_state) 
开发者ID:pkhungurn,项目名称:talking-head-anime-demo,代码行数:5,代码来源:util.py

示例15: setstate

# 需要导入模块: import torch [as 别名]
# 或者: from torch import set_rng_state [as 别名]
def setstate(self, state: np.ndarray) -> None:
        return torch.set_rng_state(torch.from_numpy(state)) 
开发者ID:torchvideo,项目名称:torchvideo,代码行数:4,代码来源:__init__.py


注:本文中的torch.set_rng_state方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。