本文整理汇总了Python中torch.rsqrt方法的典型用法代码示例。如果您正苦于以下问题:Python torch.rsqrt方法的具体用法?Python torch.rsqrt怎么用?Python torch.rsqrt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.rsqrt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, input):
if get_world_size() == 1 or not self.training:
return super().forward(input)
assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3])
meansqr = torch.mean(input * input, dim=[0, 2, 3])
vec = torch.cat([mean, meansqr], dim=0)
vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
return input * scale + bias
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x):
inv_var = torch.rsqrt(self.running_var + self.eps)
if self.affine:
alpha = self.weight * inv_var
beta = self.bias - self.running_mean * alpha
else:
alpha = inv_var
beta = - self.running_mean * alpha
x.mul_(alpha.view(self._broadcast_shape(x)))
x.add_(beta.view(self._broadcast_shape(x)))
if self.activation == "relu":
return functional.relu(x, inplace=True)
elif self.activation == "leaky_relu":
return functional.leaky_relu(x, negative_slope=self.activation_param, inplace=True)
elif self.activation == "elu":
return functional.elu(x, alpha=self.activation_param, inplace=True)
elif self.activation == "identity":
return x
else:
raise RuntimeError("Unknown activation function {}".format(self.activation))
示例3: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, z):
if z.size(-1) == 1:
return z
mu = torch.mean(z, keepdim=True, dim=-1)
sigma = torch.std(z, keepdim=True, dim=-1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
if self.affine:
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
# NOTE(nikita): the t2t code does the following instead, with eps=1e-6
# However, I currently have no reason to believe that this difference in
# implementation matters.
# mu = torch.mean(z, keepdim=True, dim=-1)
# variance = torch.mean((z - mu.expand_as(z))**2, keepdim=True, dim=-1)
# ln_out = (z - mu.expand_as(z)) * torch.rsqrt(variance + self.eps).expand_as(z)
# ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
return ln_out
# %%
示例4: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x):
"""
Input Variables:
----------------
x: Input tensor of shape [NxCxHxW]
"""
n, c, h, w = x.shape
assert (self.gamma.shape[1], self.beta.shape[1], self.tau.shape[1]) == (c, c, c)
# Compute the mean norm of activations per channel
nu2 = torch.mean(x.pow(2), (2,3), keepdims=True)
# Perform FRN
x = x * torch.rsqrt(nu2 + torch.abs(self.eps))
# Return after applying the Offset-ReLU non-linearity
return torch.max(self.gamma*x + self.beta, self.tau)
示例5: __p_k
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def __p_k(self, x, mu, var):
"""
Returns a tensor with dimensions (n, k, 1) indicating the likelihood of data belonging to the k-th Gaussian.
args:
x: torch.Tensor (n, k, d)
mu: torch.Tensor (1, k, d)
var: torch.Tensor (1, k, d)
returns:
p_k: torch.Tensor (n, k, 1)
"""
# (1, k, d) --> (n, k, d)
mu = mu.expand(x.size(0), self.n_components, self.n_features)
var = var.expand(x.size(0), self.n_components, self.n_features)
# (n, k, d) --> (n, k, 1)
exponent = torch.exp(-.5 * torch.sum((x - mu) * (x - mu) / var, 2, keepdim=True))
# (n, k, d) --> (n, k, 1)
prefactor = torch.rsqrt(((2. * pi) ** self.n_features) * torch.prod(var, dim=2, keepdim=True) + self.eps)
return prefactor * exponent
示例6: fused_bn
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def fused_bn(x, mean, var, gain=None, bias=None, eps=1e-5):
# Apply scale and shift--if gain and bias are provided, fuse them here
# Prepare scale
scale = torch.rsqrt(var + eps)
# If a gain is provided, use it
if gain is not None:
scale = scale * gain
# Prepare shift
shift = mean * scale
# If bias is provided, use it
if bias is not None:
shift = shift - bias
return x * scale - shift
#return ((x - mean) / ((var + eps) ** 0.5)) * gain + bias # The unfused way.
# Manual BN
# Calculate means and variances using mean-of-squares minus mean-squared
示例7: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, input, noise):
# assumes input.dim() == 4, TODO: generalize that.
shift = self.shift_conv.forward(noise)
scale = self.scale_conv.forward(noise)
size = input.size()
x_reshaped = input.view(size[0], size[1], size[2]*size[3])
mean = x_reshaped.mean(2, keepdim=True)
var = x_reshaped.var(2, keepdim=True)
std = torch.rsqrt(var + self.eps)
norm_features = ((x_reshaped - mean) * std).view(*size)
output = norm_features * scale + shift
return output
######################################################################
# A modified resnet block which allows for passing additional noise input
# to be used for conditional instance norm
######################################################################
示例8: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x):
"""
0, 1, 2, 3 -> (B, H, W, C) in TensorFlow
0, 1, 2, 3 -> (B, C, H, W) in PyTorch
TensorFlow code
nu2 = tf.reduce_mean(tf.square(x), axis=[1, 2], keepdims=True)
x = x * tf.rsqrt(nu2 + tf.abs(eps))
# This Code include TLU function max(y, tau)
return tf.maximum(gamma * x + beta, tau)
"""
# Compute the mean norm of activations per channel.
nu2 = x.pow(2).mean(dim=[2, 3], keepdim=True)
# Perform FRN.
x = x * torch.rsqrt(nu2 + self.eps.abs())
# Scale and Bias
x = self.weight.view(1, self.num_features, 1, 1) * x + self.bias.view(1, self.num_features, 1, 1)
# x = self.weight * x + self.bias
return x
示例9: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x):
h = x.unsqueeze(2).unsqueeze(3)
if self.normalize_latents:
mean = torch.mean(h * h, 1, keepdim=True)
dom = torch.rsqrt(mean + self.eps)
h = h * dom
h = self.block0(h, self.depth == 0)
if self.depth > 0:
for i in range(self.depth - 1):
h = F.upsample(h, scale_factor=2)
h = self.blocks[i](h)
h = F.upsample(h, scale_factor=2)
ult = self.blocks[self.depth - 1](h, True)
if self.alpha < 1.0:
if self.depth > 1:
preult_rgb = self.blocks[self.depth - 2].toRGB(h)
else:
preult_rgb = self.block0.toRGB(h)
else:
preult_rgb = 0
h = preult_rgb * (1-self.alpha) + ult * self.alpha
return h
示例10: comp_simi
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def comp_simi(inputs):
"""Compute Similarity
"""
values, indices = torch.max(inputs, 1)
thres = 0.9
weights = values.ge(thres)
weights = weights.type(torch.cuda.FloatTensor)
[batch_size, dim] = inputs.shape
indices = torch.unsqueeze(indices.cpu(), 1)
one_hot_labels = torch.zeros(batch_size, dim).scatter_(1, indices, 1)
one_hot_labels = one_hot_labels.cuda()
inputs2 = torch.mul(inputs, inputs)
norm2 = torch.sum(inputs2, 1)
root_inv = torch.rsqrt(norm2)
tmp_var1 = root_inv.expand(dim,batch_size)
tmp_var2 = torch.t(tmp_var1)
nml_inputs = torch.mul(inputs, tmp_var2)
similarity = torch.matmul(nml_inputs, torch.t(nml_inputs))
similarity2 = similarity - torch.eye(batch_size).cuda()
return similarity, one_hot_labels, weights
示例11: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x):
if x.requires_grad:
# When gradients are needed, F.batch_norm will use extra memory
# because its backward op computes gradients for weight/bias as well.
scale = self.weight * (self.running_var + self.eps).rsqrt()
bias = self.bias - self.running_mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
return x * scale + bias
else:
# When gradients are not needed, F.batch_norm is a single fused op
# and provide more optimization opportunities.
return F.batch_norm(
x,
self.running_mean,
self.running_var,
self.weight,
self.bias,
training=False,
eps=self.eps,
)
示例12: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, input):
if comm.get_world_size() == 1 or not self.training:
return super().forward(input)
assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3])
meansqr = torch.mean(input * input, dim=[0, 2, 3])
vec = torch.cat([mean, meansqr], dim=0)
vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
return input * scale + bias
示例13: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, input):
if du.get_local_size() == 1 or not self.training:
return super().forward(input)
assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3, 4])
meansqr = torch.mean(input * input, dim=[0, 2, 3, 4])
vec = torch.cat([mean, meansqr], dim=0)
vec = GroupGather.apply(vec, self.num_sync_devices, self.num_groups) * (
1.0 / self.num_sync_devices
)
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1, 1)
bias = bias.reshape(1, -1, 1, 1, 1)
return input * scale + bias
示例14: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, x, y):
# x: N x C x W x H
batchSize, nChannel, width, height = x.size()
tmpX = x.view(batchSize, nChannel, -1)
mux = tmpX.mean(dim=2).view(batchSize, nChannel, 1, 1)
varx = torch.clamp((tmpX*tmpX).mean(dim=2).view(batchSize, nChannel, 1, 1) - mux*mux, min=0)
varx = torch.rsqrt(varx + self.epsilon)
x = (x - mux) * varx
# Adapt style
styleY = self.styleModulator(y)
yA = styleY[:, : self.dimOut].view(batchSize, self.dimOut, 1, 1)
yB = styleY[:, self.dimOut:].view(batchSize, self.dimOut, 1, 1)
return yA * x + yB
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rsqrt [as 别名]
def forward(self, input):
if comm.get_world_size() == 1 or not self.training:
return super().forward(input)
assert input.shape[0] > 0, "SyncBatchNorm does not support empty input"
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3])
meansqr = torch.mean(input * input, dim=[0, 2, 3])
vec = torch.cat([mean, meansqr], dim=0)
vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
return input * scale + bias