本文整理汇总了Python中torch.rot90方法的典型用法代码示例。如果您正苦于以下问题:Python torch.rot90方法的具体用法?Python torch.rot90怎么用?Python torch.rot90使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.rot90方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: map_pool
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def map_pool(output_size, dtype=np.float32):
def _thunk(obs_space):
def runner(x):
with torch.no_grad():
# input: h x w x c
# output: c x h x w and normalized, ready to pass into net.forward
assert x.shape[0] == x.shape[1], 'we are only using square data, data format: N,H,W,C'
if isinstance(x, torch.Tensor): # for training
x = torch.cuda.FloatTensor(x.cuda())
else: # for testing
x = torch.cuda.FloatTensor(x.copy()).cuda()
x.unsqueeze_(0)
x = x.permute(0, 3, 1, 2) / 255.0 #.view(1, 3, 256, 256)
x = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
x = torch.rot90(x, k=2, dims=(2,3)) # Face north (this could be computed using a different world2agent transform)
x = 2.0 * x - 1.0
x.squeeze_(0)
# print(x.shape)
return x.cpu()
return runner, spaces.Box(-1, 1, output_size, dtype)
return _thunk
示例2: map_pool_collated
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def map_pool_collated(output_size, dtype=np.float32):
def _thunk(obs_space):
def runner(x):
with torch.no_grad():
# input: n x h x w x c
# output: n x c x h x w and normalized, ready to pass into net.forward
assert x.shape[2] == x.shape[1], 'we are only using square data, data format: N,H,W,C'
if isinstance(x, torch.Tensor): # for training
x = torch.cuda.FloatTensor(x.cuda())
else: # for testing
x = torch.cuda.FloatTensor(x.copy()).cuda()
x = x.permute(0, 3, 1, 2) / 255.0 #.view(1, 3, 256, 256)
x = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
x = torch.rot90(x, k=2, dims=(2,3)) # Face north (this could be computed using a different world2agent transform)
x = 2.0 * x - 1.0
return x
return runner, spaces.Box(-1, 1, output_size, dtype)
return _thunk
示例3: apply_tta
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def apply_tta(input):
inputs = []
inputs.append(input)
inputs.append(torch.flip(input, dims=[2]))
inputs.append(torch.flip(input, dims=[3]))
inputs.append(torch.rot90(input, k=1, dims=[2, 3]))
inputs.append(torch.rot90(input, k=2, dims=[2, 3]))
inputs.append(torch.rot90(input, k=3, dims=[2, 3]))
inputs.append(torch.rot90(torch.flip(input, dims=[2]), k=1, dims=[2, 3]))
inputs.append(torch.rot90(torch.flip(input, dims=[2]), k=3, dims=[2, 3]))
return inputs
示例4: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def forward(self, x, y):
if self.rotations:
k_rot = random.choice([-1, 0, 1])
x = torch.rot90(x, k_rot, [2, 3])
y = torch.rot90(y, k_rot, [2, 3])
if self.flips:
if random.choice([True, False]):
x = torch.flip(x, (2,))
y = torch.flip(y, (2,))
if random.choice([True, False]):
x = torch.flip(x, (3,))
y = torch.flip(y, (3,))
return self.loss(x, y)
示例5: rot90
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def rot90(x, k=1):
"""rotate batch of images by 90 degrees k times"""
return torch.rot90(x, k, (2, 3))
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def forward(self, batch, angle):
# rotation is couterclockwise
k = angle // 90
return torch.rot90(batch, k, (2, 3))
示例7: transform
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def transform(self, x):
return torch.rot90(x, k=self.k, dims=(-1, -2))
示例8: backward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def backward(self, inp):
return self.forward(inp)
# TODO
# class Rot90Augment:
# def __init__(self, k, dims):
# self.k = k
# self.dims = dims
#
# def forward(self, inp):
# return torch.rot90(inp, k=self.k, dims=self.dims)
#
# def backward(self, inp):
# return torch.rot90(inp, k=-self.k, dims=self.dims)
示例9: rot90
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def rot90(data: torch.Tensor, k: int, dims: Union[int, Sequence[int]]):
"""
Rotate 90 degrees around dims
Args:
data: input data
k: number of times to rotate
dims: dimensions to mirror
Returns:
torch.Tensor: tensor with mirrored dimensions
"""
dims = [int(d + 2) for d in dims]
return torch.rot90(data, int(k), dims)
示例10: train
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def train():
net.train() # enter train mode
loss_avg = 0.0
for bx, by in train_loader:
curr_batch_size = bx.size(0)
by_prime = torch.cat((torch.zeros(bx.size(0)), torch.ones(bx.size(0)),
2*torch.ones(bx.size(0)), 3*torch.ones(bx.size(0))), 0).long()
bx = bx.numpy()
# use torch.rot90 in later versions of pytorch
bx = np.concatenate((bx, bx, np.rot90(bx, 1, axes=(2, 3)),
np.rot90(bx, 2, axes=(2, 3)), np.rot90(bx, 3, axes=(2, 3))), 0)
bx = torch.FloatTensor(bx)
bx, by, by_prime = bx.cuda(), by.cuda(), by_prime.cuda()
adv_bx = adversary(net, bx, by, by_prime, curr_batch_size)
# forward
logits, pen = net(adv_bx * 2 - 1)
# backward
scheduler.step()
optimizer.zero_grad()
loss = F.cross_entropy(logits[:curr_batch_size], by)
loss += 0.5 * F.cross_entropy(net.module.rot_pred(pen[curr_batch_size:]), by_prime)
loss.backward()
optimizer.step()
# exponential moving average
loss_avg = loss_avg * 0.9 + float(loss) * 0.1
state['train_loss'] = loss_avg
# test function
示例11: get_random_augmenters
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def get_random_augmenters(
ndim: int
) -> Tuple[Callable[[torch.Tensor], torch.Tensor], Callable[[torch.Tensor], torch.Tensor]]:
"""Produce a pair of functions ``augment, reverse_augment``, where
the ``augment`` function applies a random augmentation to a torch
tensor and the ``reverse_augment`` function performs the reverse
aumentations if applicable (i.e. for geometrical transformations)
so pixel-level loss calculation is still correct).
Note that all augmentations are performed on the compute device that
holds the input, so generally on the GPU.
"""
# Random rotation angle (in 90 degree steps)
k90 = torch.randint(0, 4, ()).item()
# Get a random selection of spatial dims (ranging from [] to [2, 3, ..., example.ndim - 1]
flip_dims_binary = torch.randint(0, 2, (ndim - 2,))
flip_dims = (torch.nonzero(flip_dims_binary, as_tuple=False).squeeze(1) + 2).tolist()
@torch.no_grad()
def augment(x: torch.Tensor) -> torch.Tensor:
x = torch.rot90(x, +k90, (-1, -2))
if len(flip_dims) > 0:
x = torch.flip(x, flip_dims)
# # Uncomment to enable additional random brightness and contrast augmentations
# contrast_std = 0.1
# brightness_std = 0.1
# a = torch.randn(x.shape[:2], device=x.device, dtype=x.dtype) * contrast_std + 1.0
# b = torch.randn(x.shape[:2], device=x.device, dtype=x.dtype) * brightness_std
# for n in range(x.shape[0]):
# for c in range(x.shape[1]):
# # Formula based on tf.image.{adjust_contrast,adjust_brightness}
# # See https://www.tensorflow.org/api_docs/python/tf/image
# m = torch.mean(x[n, c])
# x[n, c] = a[n, c] * (x[n, c] - m) + m + b[n, c]
# # Uncomment to enable additional additive gaussian noise augmentations
# agn_std = 0.1
# x.add_(torch.randn_like(x).mul_(agn_std))
return x
@torch.no_grad()
def reverse_augment(x: torch.Tensor) -> torch.Tensor:
if len(flip_dims) > 0: # Check is necessary only on cuda
x = torch.flip(x, flip_dims)
x = torch.rot90(x, -k90, (-1, -2))
return x
return augment, reverse_augment
示例12: construct_occupancy_map
# 需要导入模块: import torch [as 别名]
# 或者: from torch import rot90 [as 别名]
def construct_occupancy_map(self) -> np.ndarray:
# does not need second_last_pointgoal
if len(self.history) == 0:
return np.zeros((MAP_SIZE, MAP_SIZE, 3), dtype=np.uint8)
cur_agent_pos_polar, cur_agent_heading = self.last_state[:2], self.last_state[2]
cur_agent_pos_xy = convert_polar_to_xy(cur_agent_pos_polar)
global_coords_polar = copy.deepcopy(np.array(self.history))[:,:2] # throw away heading
global_coords_xy = convert_polar_to_xy(global_coords_polar)
# translate then rotate by negative angle only because we rotate everything by PI before return
# rotation subtracts initial heading so that the initial agent always points 'north'
agent_coords = global_coords_xy - cur_agent_pos_xy
agent_coords = rotate(agent_coords, -1 * (cur_agent_heading - self.init_heading))
# agent_coords = rotate(agent_coords, -1 * (np.pi + cur_agent_heading - self.init_heading))
# calculate goal coordinates (independent of forward model)
last_pointgoal_rotated = self.last_pointgoal #+ np.array([0, np.pi])
goal = convert_polar_to_xy(last_pointgoal_rotated)
goal_coords = np.array([goal])
# quantize
visitation_cells = pos_to_map(agent_coords + self.max_building_size / 2, cell_size=self.cell_size)
goal_cells = pos_to_map(goal_coords + self.max_building_size / 2, cell_size=self.cell_size)
# plot (make ambient pixels 128 so that they are 0 when pass into nn)
omap = torch.full((3, MAP_SIZE, MAP_SIZE), fill_value=128, dtype=torch.uint8, device=None, requires_grad=False) # Avoid multiplies, stack, and copying to torch
omap[0][visitation_cells[:, 0], visitation_cells[:, 1]] = 255 # Agent visitation
omap[1][goal_cells[:, 0], goal_cells[:, 1]] = 255 # Goal
# omap[2][visitation_cells[-1][0], visitation_cells[-1][1]] = 255 # Agent itself
# omap = np.rot90(omap, k=2, axes=(0,1))
# WARNING: with code checkpoints, we need the map to be rotated
# omap = torch.rot90(omap, k=2, dims=(1,2)) # Face north (this could be computed using a different world2agent transform)
if self.max_pool:
omap = F.max_pool2d(omap.float(), kernel_size=3, stride=1, padding=1).byte()
omap = omap.permute(1, 2, 0).cpu().numpy()
assert omap.dtype == np.uint8, f'Omap needs to be uint8, currently {omap.dtype}'
return omap