本文整理汇总了Python中torch.roll方法的典型用法代码示例。如果您正苦于以下问题:Python torch.roll方法的具体用法?Python torch.roll怎么用?Python torch.roll使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.roll方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: p2o
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def p2o(psf, shape):
'''
# psf: NxCxhxw
# shape: [H,W]
# otf: NxCxHxWx2
'''
otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
for axis, axis_size in enumerate(psf.shape[2:]):
otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
otf = torch.rfft(otf, 2, onesided=False)
n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
otf[...,1][torch.abs(otf[...,1])<n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
return otf
# otf2psf: not sure where I got this one from. Maybe translated from Octave source code or whatever. It's just math.
示例2: p2o
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def p2o(psf, shape):
'''
Args:
psf: NxCxhxw
shape: [H,W]
Returns:
otf: NxCxHxWx2
'''
otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
for axis, axis_size in enumerate(psf.shape[2:]):
otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
otf = torch.rfft(otf, 2, onesided=False)
n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
otf[...,1][torch.abs(otf[...,1])<n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
return otf
示例3: test_roll
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def test_roll(workers):
bob, alice, james = (workers["bob"], workers["alice"], workers["james"])
t = torch.tensor([[1, 2, 3], [4, 5, 6]])
x = t.share(bob, alice, crypto_provider=james)
res1 = torch.roll(x, 2)
res2 = torch.roll(x, 2, dims=1)
res3 = torch.roll(x, (1, 2), dims=(0, 1))
assert (res1.get() == torch.roll(t, 2)).all()
assert (res2.get() == torch.roll(t, 2, dims=1)).all()
assert (res3.get() == torch.roll(t, (1, 2), dims=(0, 1))).all()
# With MultiPointerTensor
shifts = torch.tensor(1).send(alice, bob)
res = torch.roll(x, shifts)
shifts1 = torch.tensor(1).send(alice, bob)
shifts2 = torch.tensor(2).send(alice, bob)
res2 = torch.roll(x, (shifts1, shifts2), dims=(0, 1))
assert (res.get() == torch.roll(t, 1)).all()
assert (res2.get() == torch.roll(t, (1, 2), dims=(0, 1))).all()
示例4: calculate_mask
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def calculate_mask(self, inp):
# inp is batch_size x self.input_size where batch_size is num_processes*num_agents
pos = inp[:, self.pos_index:self.pos_index+2]
bsz = inp.size(0)//self.num_agents
mask = torch.full(size=(bsz,self.num_agents,self.num_agents),fill_value=0,dtype=torch.uint8)
if self.mask_dist is not None and self.mask_dist > 0:
for i in range(1,self.num_agents):
shifted = torch.roll(pos,-bsz*i,0)
dists = torch.norm(pos-shifted,dim=1)
restrict = dists > self.mask_dist
for x in range(self.num_agents):
mask[:,x,(x+i)%self.num_agents].copy_(restrict[bsz*x:bsz*(x+1)])
elif self.mask_dist is not None and self.mask_dist == -10:
if self.dropout_mask is None or bsz!=self.dropout_mask.shape[0] or np.random.random_sample() < 0.1: # sample new dropout mask
temp = torch.rand(mask.size()) > 0.85
temp.diagonal(dim1=1,dim2=2).fill_(0)
self.dropout_mask = (temp+temp.transpose(1,2))!=0
mask.copy_(self.dropout_mask)
return mask
示例5: otf2psf
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def otf2psf(otf, outsize=None):
insize = np.array(otf.shape)
psf = np.fft.ifftn(otf, axes=(0, 1))
for axis, axis_size in enumerate(insize):
psf = np.roll(psf, np.floor(axis_size / 2).astype(int), axis=axis)
if type(outsize) != type(None):
insize = np.array(otf.shape)
outsize = np.array(outsize)
n = max(np.size(outsize), np.size(insize))
# outsize = postpad(outsize(:), n, 1);
# insize = postpad(insize(:) , n, 1);
colvec_out = outsize.flatten().reshape((np.size(outsize), 1))
colvec_in = insize.flatten().reshape((np.size(insize), 1))
outsize = np.pad(colvec_out, ((0, max(0, n - np.size(colvec_out))), (0, 0)), mode="constant")
insize = np.pad(colvec_in, ((0, max(0, n - np.size(colvec_in))), (0, 0)), mode="constant")
pad = (insize - outsize) / 2
if np.any(pad < 0):
print("otf2psf error: OUTSIZE must be smaller than or equal than OTF size")
prepad = np.floor(pad)
postpad = np.ceil(pad)
dims_start = prepad.astype(int)
dims_end = (insize - postpad).astype(int)
for i in range(len(dims_start.shape)):
psf = np.take(psf, range(dims_start[i][0], dims_end[i][0]), axis=i)
n_ops = np.sum(otf.size * np.log2(otf.shape))
psf = np.real_if_close(psf, tol=n_ops)
return psf
# psf2otf copied/modified from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py
示例6: __getitem__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def __getitem__(self, index):
item = self.dataset[index]
return torch.roll(item, self.shifts)
示例7: test_roll
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def test_roll(workers):
x = torch.tensor([1.0, 2.0, 3, 4, 5])
expected = torch.roll(x, -1)
index = torch.tensor([-1.0])
result = torch.roll(x, index)
assert (result == expected).all()
示例8: psf2otf
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def psf2otf(psf, shape=None):
"""
Convert point-spread function to optical transfer function.
Compute the Fast Fourier Transform (FFT) of the point-spread
function (PSF) array and creates the optical transfer function (OTF)
array that is not influenced by the PSF off-centering.
By default, the OTF array is the same size as the PSF array.
To ensure that the OTF is not altered due to PSF off-centering, PSF2OTF
post-pads the PSF array (down or to the right) with zeros to match
dimensions specified in OUTSIZE, then circularly shifts the values of
the PSF array up (or to the left) until the central pixel reaches (1,1)
position.
Parameters
----------
psf : `numpy.ndarray`
PSF array
shape : int
Output shape of the OTF array
Returns
-------
otf : `numpy.ndarray`
OTF array
Notes
-----
Adapted from MATLAB psf2otf function
"""
if type(shape) == type(None):
shape = psf.shape
shape = np.array(shape)
if np.all(psf == 0):
# return np.zeros_like(psf)
return np.zeros(shape)
if len(psf.shape) == 1:
psf = psf.reshape((1, psf.shape[0]))
inshape = psf.shape
psf = zero_pad(psf, shape, position='corner')
for axis, axis_size in enumerate(inshape):
psf = np.roll(psf, -int(axis_size / 2), axis=axis)
# Compute the OTF
otf = np.fft.fft2(psf, axes=(0, 1))
# Estimate the rough number of operations involved in the FFT
# and discard the PSF imaginary part if within roundoff error
# roundoff error = machine epsilon = sys.float_info.epsilon
# or np.finfo().eps
n_ops = np.sum(psf.size * np.log2(psf.shape))
otf = np.real_if_close(otf, tol=n_ops)
return otf
示例9: maxpool_deriv
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def maxpool_deriv(x_sh):
""" Compute derivative of MaxPool
Args:
x_sh (AdditiveSharingTensor): the private tensor on which the op applies
Returns:
an AdditiveSharingTensor of the same shape as x_sh full of zeros except for
a 1 at the position of the max value
"""
assert (
x_sh.dtype != "custom"
), "`custom` dtype shares are unsupported in SecureNN, use dtype = `long` or `int` instead"
workers = x_sh.locations
crypto_provider = x_sh.crypto_provider
L = x_sh.field
dtype = get_dtype(L)
torch_dtype = get_torch_dtype(L)
n1, n2 = x_sh.shape
n = n1 * n2
assert L % n == 0
x_sh = x_sh.view(-1)
# Common Randomness
U_sh = _shares_of_zero(n, L, dtype, crypto_provider, *workers)
r = _random_common_value(L, *workers)
# 1)
_, ind_max_sh = maxpool(x_sh)
# 2)
j = sy.MultiPointerTensor(
children=[torch.tensor([int(i == 0)]).send(w, **no_wrap) for i, w in enumerate(workers)]
)
k_sh = ind_max_sh + j * r
# 3)
t = k_sh.get()
k = t % n
E_k = torch.zeros(n, dtype=torch_dtype)
E_k[k] = 1
E_sh = E_k.share(*workers, field=L, dtype=dtype, **no_wrap)
# 4)
g = r % n
D_sh = torch.roll(E_sh, -g)
maxpool_d_sh = D_sh + U_sh
return maxpool_d_sh.view(n1, n2)
示例10: fog_creator
# 需要导入模块: import torch [as 别名]
# 或者: from torch import roll [as 别名]
def fog_creator(fog_vars, bsize=1, mapsize=256, wibbledecay=1.75):
assert (mapsize & (mapsize - 1) == 0)
maparray = torch.from_numpy(np.empty((bsize, mapsize, mapsize), dtype=np.float32)).cuda()
maparray[:, 0, 0] = 0
stepsize = mapsize
wibble = 100
var_num = 0
def wibbledmean(array, var_num):
result = array / 4. + fog_vars[var_num] * 2 * wibble - wibble
return result
def fillsquares(var_num):
"""For each square of points stepsize apart,
calculate middle value as mean of points + wibble"""
cornerref = maparray[:, 0:mapsize:stepsize, 0:mapsize:stepsize]
squareaccum = cornerref + torch.roll(cornerref, -1, 1)
squareaccum = squareaccum + torch.roll(squareaccum, -1, 2)
maparray[:, stepsize // 2:mapsize:stepsize,
stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum, var_num)
return var_num + 1
def filldiamonds(var_num):
"""For each diamond of points stepsize apart,
calculate middle value as mean of points + wibble"""
mapsize = maparray.size(1)
drgrid = maparray[:, stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize]
ulgrid = maparray[:, 0:mapsize:stepsize, 0:mapsize:stepsize]
ldrsum = drgrid + torch.roll(drgrid, 2, 1)
lulsum = ulgrid + torch.roll(ulgrid, -1, 2)
ltsum = ldrsum + lulsum
maparray[:, 0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum, var_num)
var_num += 1
tdrsum = drgrid + torch.roll(drgrid, 2, 2)
tulsum = ulgrid + torch.roll(ulgrid, -1, 1)
ttsum = tdrsum + tulsum
maparray[:, stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum, var_num)
return var_num + 1
while stepsize >= 2:
var_num = fillsquares(var_num)
var_num = filldiamonds(var_num)
stepsize //= 2
wibble /= wibbledecay
maparray = maparray - maparray.min()
return (maparray / maparray.max()).reshape(bsize, 1, mapsize, mapsize)