本文整理汇总了Python中torch.renorm方法的典型用法代码示例。如果您正苦于以下问题:Python torch.renorm方法的具体用法?Python torch.renorm怎么用?Python torch.renorm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.renorm方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_dim0
# 需要导入模块: import torch [as 别名]
# 或者: from torch import renorm [as 别名]
def set_dim0(x):
x = torch.renorm(x, p=2, dim=0, maxnorm=1e2) # otherwise leaves will explode
# NOTE: the paper does not mention the square part of the equation but if
# you try to derive it you get a square term in the equation
dim0 = torch.sqrt(1 + (x[:, 1:] ** 2).sum(dim=1))
x[:, 0] = dim0
return x
# ========================= models
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import renorm [as 别名]
def forward(self, input, offsets, ref=None):
'''
:param input: a 1-dim tensor of indices
:param offset: a 1-dim tensor of offsets
:param ref: a 2-dim tensor of ref feats, typically the features of ads
:return:
'''
assert (ref is None and not self.atten) or (ref is not None and self.atten)
# add 1 dim for Embedding
input = input.view(1,-1)
# return 1, n_word, n_dim
embedding = self.embedder(input)
#print(embedding)
size = embedding.size()
# n_word, n_dim
embedding = embedding.view(size[1],size[2])
if self.atten:
size = embedding.size()
# replicate ref n_word, n_dim
ref = replicate(ref,offsets,size[0])
#print(ref)
# calculate the attention
#todo
diff = ref-embedding
feat_for_atten = torch.cat([embedding,diff,ref],dim=1)
atten = self.linear1(feat_for_atten)
atten = self.activation(atten)
atten = self.linear2(atten)
# n_word, 1
atten = self.sigmoid(atten)
# print(atten)
embedding = embedding * atten
#print(embedding)
# n_sample, n_dim
res = reduce(embedding,offsets,self.mode)
# following lines constrain the max norm of embedding.
size = res.size()
# n_sample, n_field, n_dim//n_field
res = res.view(size[0]*self.n_field,size[1]//self.n_field)
renorm_res = torch.renorm(res,p=self.norm_type,dim=0,maxnorm=self.max_norm)
renorm_res = renorm_res.contiguous()
# res = F.normalize(res,p=self.norm_type,dim=2)*self.max_norm
res = renorm_res.view(size[0],size[1])
return res
示例3: load_word2vec_format
# 需要导入模块: import torch [as 别名]
# 或者: from torch import renorm [as 别名]
def load_word2vec_format(filename, word_idx, binary=False, normalize=False,
encoding='utf8', unicode_errors='ignore'):
"""
refer to gensim
load Word Embeddings
If you trained the C model using non-utf8 encoding for words, specify that
encoding in `encoding`.
:param filename :
:param word_idx :
:param binary : a boolean indicating whether the data is in binary word2vec format.
:param normalize:
:param encoding :
:param unicode_errors: errors can be 'strict', 'replace' or 'ignore' and defaults to 'strict'.
"""
vocab = set()
print("loading word embedding from %s" % filename)
with open(filename, 'rb') as fin:
# header = to_unicode(fin.readline(), encoding=encoding)
# vocab_size, vector_size = map(int, header.split()) # throws for invalid file format
vocab_size = 1917494
vector_size = 300
word_matrix = torch.zeros(len(word_idx), vector_size)
def add_word(_word, _weights):
if _word not in word_idx:
return
vocab.add(_word)
word_matrix[word_idx[_word]] = _weights
if binary:
binary_len = np.dtype(np.float32).itemsize * vector_size
for _ in range(vocab_size):
# mixed text and binary: read text first, then binary
word = []
while True:
ch = fin.read(1)
if ch == b' ':
break
if ch != b'\n': # ignore newlines in front of words (some binary files have)
word.append(ch)
word = to_unicode(b''.join(word), encoding=encoding, errors=unicode_errors)
weights = torch.from_numpy(np.fromstring(fin.read(binary_len), dtype=REAL))
add_word(word, weights)
else:
for line_no, line in enumerate(fin):
parts = to_unicode(line.rstrip(), encoding=encoding, errors=unicode_errors).split(" ")
if len(parts) != vector_size + 1:
raise ValueError("invalid vector on line %s (is this really the text format?)" % line_no)
word, weights = parts[0], list(map(float, parts[1:]))
weights = torch.Tensor(weights)
add_word(word, weights)
if word_idx is not None:
assert (len(word_idx), vector_size) == word_matrix.size()
if normalize:
# each row normalize to 1
word_matrix = torch.renorm(word_matrix, 2, 0, 1)
print("loaded %d words pre-trained from %s with %d" % (len(vocab), filename, vector_size))
return word_matrix, vector_size, vocab