本文整理汇总了Python中torch.randn方法的典型用法代码示例。如果您正苦于以下问题:Python torch.randn方法的具体用法?Python torch.randn怎么用?Python torch.randn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.randn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: translate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def translate(self, tensors, num_decode, enum_root, greedy=True):
tensors = make_cuda(tensors)
root_vecs, tree_vecs, graph_vecs = self.encode(tensors)
all_smiles = []
if enum_root:
repeat = num_decode // len(root_vecs)
modulo = num_decode % len(root_vecs)
root_vecs = torch.cat([root_vecs] * repeat + [root_vecs[:modulo]], dim=0)
tree_vecs = torch.cat([tree_vecs] * repeat + [tree_vecs[:modulo]], dim=0)
graph_vecs = torch.cat([graph_vecs] * repeat + [graph_vecs[:modulo]], dim=0)
batch_size = len(root_vecs)
z_tree = torch.randn(batch_size, 1, self.latent_size).expand(-1, tree_vecs.size(1), -1).cuda()
z_graph = torch.randn(batch_size, 1, self.latent_size).expand(-1, graph_vecs.size(1), -1).cuda()
z_tree_vecs = self.W_tree( torch.cat([tree_vecs, z_tree], dim=-1) )
z_graph_vecs = self.W_graph( torch.cat([graph_vecs, z_graph], dim=-1) )
return self.decoder.decode( (root_vecs, z_tree_vecs, z_graph_vecs), greedy=greedy)
示例2: forward_dummy
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def forward_dummy(self, img):
"""Used for computing network flops.
See `mmdetection/tools/get_flops.py`
"""
outs = ()
# backbone
x = self.extract_feat(img)
# rpn
if self.with_rpn:
rpn_outs = self.rpn_head(x)
outs = outs + (rpn_outs, )
proposals = torch.randn(1000, 4).to(img.device)
# roi_head
roi_outs = self.roi_head.forward_dummy(x, proposals)
outs = outs + (roi_outs, )
return outs
示例3: test_resnext_backbone
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_resnext_backbone():
with pytest.raises(KeyError):
# ResNeXt depth should be in [50, 101, 152]
ResNeXt(depth=18)
# Test ResNeXt with group 32, base_width 4
model = ResNeXt(depth=50, groups=32, base_width=4)
for m in model.modules():
if is_block(m):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
示例4: test_res2net_backbone
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_res2net_backbone():
with pytest.raises(KeyError):
# Res2Net depth should be in [50, 101, 152]
Res2Net(depth=18)
# Test Res2Net with scales 4, base_width 26
model = Res2Net(depth=50, scales=4, base_width=26)
for m in model.modules():
if is_block(m):
assert m.scales == 4
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
示例5: _make_layers
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size())
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def forward(self, x):
out = self.pre_layers(x)
out = self.a3(out)
out = self.b3(out)
out = self.maxpool(out)
out = self.a4(out)
out = self.b4(out)
out = self.c4(out)
out = self.d4(out)
out = self.e4(out)
out = self.maxpool(out)
out = self.a5(out)
out = self.b5(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
# net = GoogLeNet()
# x = torch.randn(1,3,32,32)
# y = net(Variable(x))
# print(y.size())
示例7: init_duvenaud
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def init_duvenaud(self, params):
learn_args = []
learn_modules = []
args = {}
args['out'] = params['out']
# Define a parameter matrix W for each layer.
for l in range(params['layers']):
learn_args.append(nn.Parameter(torch.randn(params['in'][l], params['out'])))
# learn_modules.append(nn.Linear(params['out'], params['target']))
learn_modules.append(NNet(n_in=params['out'], n_out=params['target']))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# GG-NN, Li et al.
示例8: init_duvenaud
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def init_duvenaud(self, params):
learn_args = []
learn_modules = []
args = {}
# Filter degree 0 (the message will be 0 and therefore there is no update
args['deg'] = [i for i in params['deg'] if i!=0]
args['in'] = params['in']
args['out'] = params['out']
# Define a parameter matrix H for each degree.
learn_args.append(torch.nn.Parameter(torch.randn(len(args['deg']), args['in'], args['out'])))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# GG-NN, Li et al.
示例9: test_batch_InverseMelScale
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_batch_InverseMelScale(self):
n_mels = 32
n_stft = 5
mel_spec = torch.randn(2, n_mels, 32) ** 2
# Single then transform then batch
expected = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))
# shape = (3, 2, n_mels, 32)
# Because InverseMelScale runs SGD on randomly initialized values so they do not yield
# exactly same result. For this reason, tolerance is very relaxed here.
self.assertEqual(computed, expected, atol=1.0, rtol=1e-5)
示例10: BCE_bootstrap_with_logits
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def BCE_bootstrap_with_logits(input, target, ishard=False, beta=0.95, weight=None, size_average=True):
r"""Function that measures Binary Cross Entropy between target and output
logits with prediction consistency(bootstrap)
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
ishard: Choose soft/hard bootstrap mode
beta: Weight between ``gt`` label and prediction. In paper, 0.8 for hard and 0.95 for soft
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch. Default: ``True``
Examples::
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
>>> target = autograd.Variable(torch.FloatTensor(3).random_(2))
>>> loss = BCE_bootstrap_with_logits(input, target)
>>> loss.backward()
"""
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
input_prob = torch.sigmoid(input)
if ishard:
target = target * beta + (input_prob>0.5) * (1-beta)
else:
target = target * beta + input_prob * (1-beta)
print(target)
max_val = (-input).clamp(min=0)
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
if weight is not None:
loss = loss * weight
if size_average:
return loss.mean()
else:
return loss.sum()
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:43,代码来源:loss_function.py
示例11: sample
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def sample(self, batch_size):
root_vecs = torch.randn(batch_size, self.latent_size).cuda()
#tree_vecs = torch.randn(batch_size, self.latent_size).cuda()
#graph_vecs = torch.randn(batch_size, self.latent_size).cuda()
return self.decoder.decode((root_vecs, root_vecs, root_vecs), greedy=True, max_decode_step=150)
示例12: test_renext_bottleneck
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_renext_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow')
# Test ResNeXt Bottleneck structure
block = BottleneckX(
64, 64, groups=32, base_width=4, stride=2, style='pytorch')
assert block.conv2.stride == (2, 2)
assert block.conv2.groups == 32
assert block.conv2.out_channels == 128
# Test ResNeXt Bottleneck with DCN
dcn = dict(type='DCN', deformable_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
# conv_cfg must be None if dcn is not None
BottleneckX(
64,
64,
groups=32,
base_width=4,
dcn=dcn,
conv_cfg=dict(type='Conv'))
BottleneckX(64, 64, dcn=dcn)
# Test ResNeXt Bottleneck forward
block = BottleneckX(64, 16, groups=32, base_width=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
示例13: test_res2net_bottle2neck
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_res2net_bottle2neck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottle2neck(64, 64, base_width=26, scales=4, style='tensorflow')
with pytest.raises(AssertionError):
# Scale must be larger than 1
Bottle2neck(64, 64, base_width=26, scales=1, style='pytorch')
# Test Res2Net Bottle2neck structure
block = Bottle2neck(
64, 64, base_width=26, stride=2, scales=4, style='pytorch')
assert block.scales == 4
# Test Res2Net Bottle2neck with DCN
dcn = dict(type='DCN', deformable_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
# conv_cfg must be None if dcn is not None
Bottle2neck(
64,
64,
base_width=26,
scales=4,
dcn=dcn,
conv_cfg=dict(type='Conv'))
Bottle2neck(64, 64, dcn=dcn)
# Test Res2Net Bottle2neck forward
block = Bottle2neck(64, 16, base_width=26, scales=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
示例14: test_hourglass_backbone
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_hourglass_backbone():
with pytest.raises(AssertionError):
# HourglassNet's num_stacks should larger than 0
HourglassNet(num_stacks=0)
with pytest.raises(AssertionError):
# len(stage_channels) should equal len(stage_blocks)
HourglassNet(
stage_channels=[256, 256, 384, 384, 384],
stage_blocks=[2, 2, 2, 2, 2, 4])
with pytest.raises(AssertionError):
# len(stage_channels) should lagrer than downsample_times
HourglassNet(
downsample_times=5,
stage_channels=[256, 256, 384, 384, 384],
stage_blocks=[2, 2, 2, 2, 2])
# Test HourglassNet-52
model = HourglassNet(num_stacks=1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 511, 511)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 256, 128, 128])
# Test HourglassNet-104
model = HourglassNet(num_stacks=2)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 511, 511)
feat = model(imgs)
assert len(feat) == 2
assert feat[0].shape == torch.Size([1, 256, 128, 128])
assert feat[1].shape == torch.Size([1, 256, 128, 128])
示例15: test_conv2d
# 需要导入模块: import torch [as 别名]
# 或者: from torch import randn [as 别名]
def test_conv2d():
"""
CommandLine:
xdoctest -m tests/test_wrappers.py test_conv2d
"""
test_cases = OrderedDict([('in_w', [10, 20]), ('in_h', [10, 20]),
('in_channel', [1, 3]), ('out_channel', [1, 3]),
('kernel_size', [3, 5]), ('stride', [1, 2]),
('padding', [0, 1]), ('dilation', [1, 2])])
# train mode
for in_h, in_w, in_cha, out_cha, k, s, p, d in product(
*list(test_cases.values())):
# wrapper op with 0-dim input
x_empty = torch.randn(0, in_cha, in_h, in_w)
torch.manual_seed(0)
wrapper = Conv2d(in_cha, out_cha, k, stride=s, padding=p, dilation=d)
wrapper_out = wrapper(x_empty)
# torch op with 3-dim input as shape reference
x_normal = torch.randn(3, in_cha, in_h, in_w).requires_grad_(True)
torch.manual_seed(0)
ref = nn.Conv2d(in_cha, out_cha, k, stride=s, padding=p, dilation=d)
ref_out = ref(x_normal)
assert wrapper_out.shape[0] == 0
assert wrapper_out.shape[1:] == ref_out.shape[1:]
wrapper_out.sum().backward()
assert wrapper.weight.grad is not None
assert wrapper.weight.grad.shape == wrapper.weight.shape
assert torch.equal(wrapper(x_normal), ref_out)
# eval mode
x_empty = torch.randn(0, in_cha, in_h, in_w)
wrapper = Conv2d(in_cha, out_cha, k, stride=s, padding=p, dilation=d)
wrapper.eval()
wrapper(x_empty)