本文整理汇总了Python中torch.pow方法的典型用法代码示例。如果您正苦于以下问题:Python torch.pow方法的具体用法?Python torch.pow怎么用?Python torch.pow使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.pow方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _smooth_l1_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def _smooth_l1_loss(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, sigma=1.0, dim=[1]):
sigma_2 = sigma ** 2
box_diff = bbox_pred - bbox_targets
in_box_diff = bbox_inside_weights * box_diff
abs_in_box_diff = torch.abs(in_box_diff)
smoothL1_sign = (abs_in_box_diff < 1. / sigma_2).detach().float()
in_loss_box = torch.pow(in_box_diff, 2) * (sigma_2 / 2.) * smoothL1_sign \
+ (abs_in_box_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign)
out_loss_box = bbox_outside_weights * in_loss_box
loss_box = out_loss_box
s = loss_box.size(0)
loss_box = loss_box.view(s, -1).sum(1).mean()
# for i in sorted(dim, reverse=True):
# loss_box = loss_box.sum(i)
# loss_box = loss_box.mean()
return loss_box
示例2: _fade_in
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def _fade_in(self, waveform_length: int) -> Tensor:
fade = torch.linspace(0, 1, self.fade_in_len)
ones = torch.ones(waveform_length - self.fade_in_len)
if self.fade_shape == "linear":
fade = fade
if self.fade_shape == "exponential":
fade = torch.pow(2, (fade - 1)) * fade
if self.fade_shape == "logarithmic":
fade = torch.log10(.1 + fade) + 1
if self.fade_shape == "quarter_sine":
fade = torch.sin(fade * math.pi / 2)
if self.fade_shape == "half_sine":
fade = torch.sin(fade * math.pi - math.pi / 2) / 2 + 0.5
return torch.cat((fade, ones)).clamp_(0, 1)
示例3: _fade_out
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def _fade_out(self, waveform_length: int) -> Tensor:
fade = torch.linspace(0, 1, self.fade_out_len)
ones = torch.ones(waveform_length - self.fade_out_len)
if self.fade_shape == "linear":
fade = - fade + 1
if self.fade_shape == "exponential":
fade = torch.pow(2, - fade) * (1 - fade)
if self.fade_shape == "logarithmic":
fade = torch.log10(1.1 - fade) + 1
if self.fade_shape == "quarter_sine":
fade = torch.sin(fade * math.pi / 2 + math.pi / 2)
if self.fade_shape == "half_sine":
fade = torch.sin(fade * math.pi + math.pi / 2) / 2 + 0.5
return torch.cat((ones, fade)).clamp_(0, 1)
示例4: DB_to_amplitude
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def DB_to_amplitude(
x: Tensor,
ref: float,
power: float
) -> Tensor:
r"""Turn a tensor from the decibel scale to the power/amplitude scale.
Args:
x (Tensor): Input tensor before being converted to power/amplitude scale.
ref (float): Reference which the output will be scaled by.
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
Returns:
Tensor: Output tensor in power/amplitude scale.
"""
return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)
示例5: maskedNLL
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def maskedNLL(y_pred, y_gt, mask):
acc = torch.zeros_like(mask)
muX = y_pred[:,:,0]
muY = y_pred[:,:,1]
sigX = y_pred[:,:,2]
sigY = y_pred[:,:,3]
rho = y_pred[:,:,4]
ohr = torch.pow(1-torch.pow(rho,2),-0.5)
x = y_gt[:,:, 0]
y = y_gt[:,:, 1]
# If we represent likelihood in feet^(-1):
out = 0.5*torch.pow(ohr, 2)*(torch.pow(sigX, 2)*torch.pow(x-muX, 2) + torch.pow(sigY, 2)*torch.pow(y-muY, 2) - 2*rho*torch.pow(sigX, 1)*torch.pow(sigY, 1)*(x-muX)*(y-muY)) - torch.log(sigX*sigY*ohr) + 1.8379
# If we represent likelihood in m^(-1):
# out = 0.5 * torch.pow(ohr, 2) * (torch.pow(sigX, 2) * torch.pow(x - muX, 2) + torch.pow(sigY, 2) * torch.pow(y - muY, 2) - 2 * rho * torch.pow(sigX, 1) * torch.pow(sigY, 1) * (x - muX) * (y - muY)) - torch.log(sigX * sigY * ohr) + 1.8379 - 0.5160
acc[:,:,0] = out
acc[:,:,1] = out
acc = acc*mask
lossVal = torch.sum(acc)/torch.sum(mask)
return lossVal
## NLL for sequence, outputs sequence of NLL values for each time-step, uses mask for variable output lengths, used for evaluation
示例6: pairwise_distance
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def pairwise_distance(features, query=None, gallery=None, metric=None):
if query is None and gallery is None:
n = len(features)
x = torch.cat(list(features.values()))
x = x.view(n, -1)
if metric is not None:
x = metric.transform(x)
dist = torch.pow(x, 2).sum(dim=1, keepdim=True) * 2
dist = dist.expand(n, n) - 2 * torch.mm(x, x.t())
return dist
x = torch.cat([features["".join(f)].unsqueeze(0) for f, _, _, _ in query], 0)
y = torch.cat([features["".join(f)].unsqueeze(0) for f, _, _, _ in gallery], 0)
m, n = x.size(0), y.size(0)
x = x.view(m, -1)
y = y.view(n, -1)
if metric is not None:
x = metric.transform(x)
y = metric.transform(y)
dist = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t()
dist.addmm_(1, -2, x, y.t())
return dist
示例7: focal_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def focal_loss(self, inputs, targets):
'''Focal loss.
mean of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
'''
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P*class_mask).sum(1).view(-1,1)
log_p = probs.log()
batch_loss = -alpha*(torch.pow((1-probs), self.gamma))*log_p
loss = batch_loss.mean()
return loss
示例8: smooth_l1_loss_LW
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def smooth_l1_loss_LW(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, beta=1.0):
"""
SmoothL1(x) = 0.5 * x^2 / beta if |x| < beta
|x| - 0.5 * beta otherwise.
1 / N * sum_i alpha_out[i] * SmoothL1(alpha_in[i] * (y_hat[i] - y[i])).
N is the number of batch elements in the input predictions
"""
box_diff = bbox_pred - bbox_targets
in_box_diff = bbox_inside_weights * box_diff
abs_in_box_diff = torch.abs(in_box_diff)
smoothL1_sign = (abs_in_box_diff < beta).detach().float()
in_loss_box = smoothL1_sign * 0.5 * torch.pow(in_box_diff, 2) / beta + \
(1 - smoothL1_sign) * (abs_in_box_diff - (0.5 * beta))
out_loss_box = bbox_outside_weights * in_loss_box
loss_box = out_loss_box
N = loss_box.size(0) # batch size
loss_box = loss_box.view(-1).sum(0) / N
return loss_box
示例9: _focal_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def _focal_loss(preds, gt):
pos_inds = gt.eq(1)
neg_inds = gt.lt(1)
neg_weights = torch.pow(1 - gt[neg_inds], 4)
loss = 0
for pred in preds:
pos_pred = pred[pos_inds]
neg_pred = pred[neg_inds]
pos_loss = torch.log(pos_pred) * torch.pow(1 - pos_pred, 2)
neg_loss = torch.log(1 - neg_pred) * torch.pow(neg_pred, 2) * neg_weights
num_pos = pos_inds.float().sum()
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
if pos_pred.nelement() == 0:
loss = loss - neg_loss
else:
loss = loss - (pos_loss + neg_loss) / num_pos
return loss
# 扫视的损失函数
示例10: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def forward(self, inputs, labels):
cos_th = F.linear(inputs, F.normalize(self.weight))
cos_th = cos_th.clamp(-1, 1)
sin_th = torch.sqrt(1.0 - torch.pow(cos_th, 2))
cos_th_m = cos_th * self.cos_m - sin_th * self.sin_m
cos_th_m = torch.where(cos_th > self.th, cos_th_m, cos_th - self.mm)
cond_v = cos_th - self.th
cond = cond_v <= 0
cos_th_m[cond] = (cos_th - self.mm)[cond]
if labels.dim() == 1:
labels = labels.unsqueeze(-1)
onehot = torch.zeros(cos_th.size()).cuda()
onehot.scatter_(1, labels, 1)
outputs = onehot * cos_th_m + (1.0 - onehot) * cos_th
outputs = outputs * self.s
return outputs
示例11: focal_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def focal_loss(self, x, y):
'''Focal loss.
Args:
x: (tensor) sized [N,D].
y: (tensor) sized [N,].
Return:
(tensor) focal loss.
'''
alpha = 0.25
gamma = 2
t = F.one_hot(y.data, 1+self.num_classes) # [N,21]
t = t[:,1:] # exclude background
t = Variable(t)
p = x.sigmoid()
pt = p*t + (1-p)*(1-t) # pt = p if t > 0 else 1-p
w = alpha*t + (1-alpha)*(1-t) # w = alpha if t > 0 else 1-alpha
w = w * (1-pt).pow(gamma)
return F.binary_cross_entropy_with_logits(x, t, w, reduction='sum')
示例12: attention_image_summary
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def attention_image_summary(name, attn, step=0, writer=None):
"""Compute color image summary.
Args:
attn: a Tensor with shape [batch, num_heads, query_length, memory_length]
image_shapes: optional tuple of integer scalars.
If the query positions and memory positions represent the
pixels of flattened images, then pass in their dimensions:
(query_rows, query_cols, memory_rows, memory_cols).
If the query positions and memory positions represent the
pixels x channels of flattened images, then pass in their dimensions:
(query_rows, query_cols, query_channels,
memory_rows, memory_cols, memory_channels).
"""
num_heads = attn.size(1)
# [batch, query_length, memory_length, num_heads]
image = attn.permute(0, 2, 3, 1)
image = torch.pow(image, 0.2) # for high-dynamic-range
# Each head will correspond to one of RGB.
# pad the heads to be a multiple of 3
image = F.pad(image, [0, -num_heads % 3, 0, 0, 0, 0, 0, 0,])
image = split_last_dimension(image, 3)
image = image.max(dim=4).values
grid_image = torchvision.utils.make_grid(image.permute(0, 3, 1, 2))
writer.add_image(name, grid_image, global_step=step, dataformats='CHW')
示例13: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def __init__(self, field_size, conv_kernel_width, conv_filters, device='cpu'):
super(ConvLayer, self).__init__()
self.device = device
module_list = []
n = int(field_size)
l = len(conv_filters)
filed_shape = n
for i in range(1, l + 1):
if i == 1:
in_channels = 1
else:
in_channels = conv_filters[i - 2]
out_channels = conv_filters[i - 1]
width = conv_kernel_width[i - 1]
k = max(1, int((1 - pow(i / l, l - i)) * n)) if i < l else 3
module_list.append(Conv2dSame(in_channels=in_channels, out_channels=out_channels, kernel_size=(width, 1),
stride=1).to(self.device))
module_list.append(torch.nn.Tanh().to(self.device))
# KMaxPooling, extract top_k, returns tensors values
module_list.append(KMaxPooling(k=min(k, filed_shape), axis=2, device=self.device).to(self.device))
filed_shape = min(k, filed_shape)
self.conv_layer = nn.Sequential(*module_list)
self.to(device)
self.filed_shape = filed_shape
示例14: gelu
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import pow [as 别名]
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias