当前位置: 首页>>代码示例>>Python>>正文


Python optim.set_parameters方法代码示例

本文整理汇总了Python中torch.optim.set_parameters方法的典型用法代码示例。如果您正苦于以下问题:Python optim.set_parameters方法的具体用法?Python optim.set_parameters怎么用?Python optim.set_parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.optim的用法示例。


在下文中一共展示了optim.set_parameters方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:27,代码来源:optimizers.py

示例2: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(opt, model):
    """ Build optimizer """
    optim = Optimizer(
        opt.optim, opt.learning_rate, opt.max_grad_norm,
        lr_decay=opt.learning_rate_decay,
        start_decay_steps=opt.start_decay_steps,
        decay_steps=opt.decay_steps,
        beta1=opt.adam_beta1,
        beta2=opt.adam_beta2,
        adagrad_accum=opt.adagrad_accumulator_init,
        decay_method=opt.decay_method,
        warmup_steps=opt.warmup_steps,
        model_size=opt.encoder_size
    )

    parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
    optim.set_parameters(parameters)

    return optim 
开发者ID:jcyk,项目名称:gtos,代码行数:21,代码来源:optimizer.py

示例3: create_optimizer

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def create_optimizer(model_or_iterable, options=None):
    if options is None: options = copy.deepcopy(onmt.standard_options.stdOptions)
    if not isinstance(options, dict):
        options = mhf.convertToDictionary(options)
    options = handle_options(options)
    options = mhf.convertToNamedTuple(options)
    optim = onmt.Optim(
        options.optim, options.learning_rate, options.max_grad_norm,
        lr_decay=options.learning_rate_decay,
        start_decay_at=options.start_decay_at,
        opt=options)

    try:
        optim.set_parameters(model_or_iterable.parameters())
    except AttributeError:
        optim.set_parameters(model_or_iterable)
    return optim 
开发者ID:antspy,项目名称:quantized_distillation,代码行数:19,代码来源:model.py

示例4: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_parameters(self, model):
        """ ? """
        params = [p for p in model.parameters() if p.requires_grad]
        if self.method == 'sgd':
            self.optimizer = optim.SGD(params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(
                self.params,
                lr=self.learning_rate,
                initial_accumulator_value=self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(params, lr=self.learning_rate)
        elif self.method == 'adafactor':
            self.optimizer = AdaFactor(params, non_constant_decay=True,
                                       enable_factorization=True,
                                       weight_decay=0)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            dense = []
            sparse = []
            for name, param in model.named_parameters():
                if not param.requires_grad:
                    continue
                # TODO: Find a better way to check for sparse gradients.
                if 'embed' in name:
                    sparse.append(param)
                else:
                    dense.append(param)
            self.optimizer = MultipleOptimizer(
                [optim.Adam(dense, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(sparse, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:lizekang,项目名称:ITDD,代码行数:39,代码来源:optimizers.py

示例5: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None

    if opt.train_from:
        optim = checkpoint['optim']
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        saved_optimizer_state_dict = optim.optimizer.state_dict()
    else:
        optim = Optimizer(
            opt.optim, opt.learning_rate, opt.max_grad_norm,
            lr_decay=opt.learning_rate_decay,
            start_decay_steps=opt.start_decay_steps,
            decay_steps=opt.decay_steps,
            beta1=opt.adam_beta1,
            beta2=opt.adam_beta2,
            adagrad_accum=opt.adagrad_accumulator_init,
            decay_method=opt.decay_method,
            warmup_steps=opt.warmup_steps)

    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model" +
                " but optimizer state is empty")

    return optim 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:42,代码来源:optimizers.py

示例6: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-8, weight_decay=3e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:jcyk,项目名称:gtos,代码行数:33,代码来源:optimizer.py

示例7: set_state

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_state(self, state_dict):
        """
        If you want to load the checkpoint of an optimizer, call this function after set_parameters.
        Because the method optim.set_parameters(model.parameters()) will overwrite optim.optimizer,
        and with ith the values stored in optim.optimizer.state_dict()
        """
        self.optimizer.load_state_dict(state_dict)
        # Convert back the state values to cuda type if applicable
        for state in self.optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(self.device) 
开发者ID:jcyk,项目名称:gtos,代码行数:14,代码来源:optimizer.py

示例8: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:nlpyang,项目名称:BertSum,代码行数:33,代码来源:optimizers.py

示例9: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != "sparseadam" or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == "sgd":
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == "adagrad":
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group["params"]:
                    self.optimizer.state[p]["sum"] = self.optimizer.state[p][
                        "sum"
                    ].fill_(self.adagrad_accum)
        elif self.method == "adadelta":
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == "adam":
            self.optimizer = optim.Adam(
                self.params, lr=self.learning_rate, betas=self.betas, eps=1e-9
            )
        else:
            raise RuntimeError("Invalid optim method: " + self.method)

        self.param_groups = self.optimizer.param_groups
        self.state = self.optimizer.state 
开发者ID:microsoft,项目名称:nlp-recipes,代码行数:32,代码来源:optimizers.py

示例10: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None

    if opt.train_from:
        optim = checkpoint['optim']
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        saved_optimizer_state_dict = optim.optimizer.state_dict()
    else:
        optim = Optimizer(
            opt.optim, opt.learning_rate, opt.max_grad_norm,
            lr_decay=opt.learning_rate_decay,
            start_decay_steps=opt.start_decay_steps,
            decay_steps=opt.decay_steps,
            beta1=opt.adam_beta1,
            beta2=opt.adam_beta2,
            adagrad_accum=opt.adagrad_accumulator_init,
            decay_method=opt.decay_method,
            warmup_steps=opt.warmup_steps)

    # Stage 1:
    # Essentially optim.set_parameters (re-)creates and optimizer using
    # model.paramters() as parameters that will be stored in the
    # optim.optimizer.param_groups field of the torch optimizer class.
    # Importantly, this method does not yet load the optimizer state, as
    # essentially it builds a new optimizer with empty optimizer state and
    # parameters from the model.
    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        # Stage 2: In this stage, which is only performed when loading an
        # optimizer from a checkpoint, we load the saved_optimizer_state_dict
        # into the re-created optimizer, to set the optim.optimizer.state
        # field, which was previously empty. For this, we use the optimizer
        # state saved in the "saved_optimizer_state_dict" variable for
        # this purpose.
        # See also: https://github.com/pytorch/pytorch/issues/2830
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        # Convert back the state values to cuda type if applicable
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        # We want to make sure that indeed we have a non-empty optimizer state
        # when we loaded an existing model. This should be at least the case
        # for Adam, which saves "exp_avg" and "exp_avg_sq" state
        # (Exponential moving average of gradient and squared gradient values)
        if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model" +
                " but optimizer state is empty")

    return optim 
开发者ID:nlpyang,项目名称:BertSum,代码行数:61,代码来源:optimizers.py

示例11: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None
    optim = Optimizer(
        opt.optim, opt.learning_rate, opt.max_grad_norm,
        lr_decay=opt.learning_rate_decay,
        start_decay_steps=opt.start_decay_steps,
        decay_steps=opt.decay_steps,
        beta1=opt.adam_beta1,
        beta2=opt.adam_beta2,
        adagrad_accum=opt.adagrad_accumulator_init,
        decay_method=opt.decay_method,
        warmup_steps=opt.warmup_steps,
        model_size=opt.rnn_size)

    if opt.train_from:
        # optim = checkpoint['optim']
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        saved_optimizer_state_dict = checkpoint['optim']

    # Stage 1:
    # Essentially optim.set_parameters (re-)creates and optimizer using
    # model.paramters() as parameters that will be stored in the
    # optim.optimizer.param_groups field of the torch optimizer class.
    # Importantly, this method does not yet load the optimizer state, as
    # essentially it builds a new optimizer with empty optimizer state and
    # parameters from the model.
    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        # Stage 2: In this stage, which is only performed when loading an
        # optimizer from a checkpoint, we load the saved_optimizer_state_dict
        # into the re-created optimizer, to set the optim.optimizer.state
        # field, which was previously empty. For this, we use the optimizer
        # state saved in the "saved_optimizer_state_dict" variable for
        # this purpose.
        # See also: https://github.com/pytorch/pytorch/issues/2830
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        # Convert back the state values to cuda type if applicable
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        # We want to make sure that indeed we have a non-empty optimizer state
        # when we loaded an existing model. This should be at least the case
        # for Adam, which saves "exp_avg" and "exp_avg_sq" state
        # (Exponential moving average of gradient and squared gradient values)
        if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model" +
                " but optimizer state is empty")

    return optim 
开发者ID:nlpyang,项目名称:hiersumm,代码行数:61,代码来源:optimizer.py

示例12: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None

    if opt.train_from:
        optim = checkpoint['optim']
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        saved_optimizer_state_dict = optim.optimizer.state_dict()
    else:
        optim = Optimizer(
            opt.optim, opt.learning_rate, opt.max_grad_norm,
            lr_decay=opt.learning_rate_decay,
            start_decay_steps=opt.start_decay_steps,
            decay_steps=opt.decay_steps,
            beta1=opt.adam_beta1,
            beta2=opt.adam_beta2,
            adagrad_accum=opt.adagrad_accumulator_init,
            decay_method=opt.decay_method,
            warmup_steps=opt.warmup_steps,
            model_size=opt.rnn_size)

    # Stage 1:
    # Essentially optim.set_parameters (re-)creates and optimizer using
    # model.paramters() as parameters that will be stored in the
    # optim.optimizer.param_groups field of the torch optimizer class.
    # Importantly, this method does not yet load the optimizer state, as
    # essentially it builds a new optimizer with empty optimizer state and
    # parameters from the model.
    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        # Stage 2: In this stage, which is only performed when loading an
        # optimizer from a checkpoint, we load the saved_optimizer_state_dict
        # into the re-created optimizer, to set the optim.optimizer.state
        # field, which was previously empty. For this, we use the optimizer
        # state saved in the "saved_optimizer_state_dict" variable for
        # this purpose.
        # See also: https://github.com/pytorch/pytorch/issues/2830
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        # Convert back the state values to cuda type if applicable
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        # We want to make sure that indeed we have a non-empty optimizer state
        # when we loaded an existing model. This should be at least the case
        # for Adam, which saves "exp_avg" and "exp_avg_sq" state
        # (Exponential moving average of gradient and squared gradient values)
        if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model" +
                " but optimizer state is empty")

    return optim 
开发者ID:InitialBug,项目名称:BiSET,代码行数:62,代码来源:optimizers.py

示例13: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import set_parameters [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None

    if opt.train_from:
        optim = checkpoint["optim"]
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        # saved_optimizer_state_dict = optim.optimizer.state_dict()
        saved_optimizer_state_dict = optim
    else:
        optim = Optimizer(
            opt.optim,
            opt.learning_rate,
            opt.max_grad_norm,
            lr_decay=opt.learning_rate_decay,
            start_decay_steps=opt.start_decay_steps,
            decay_steps=opt.decay_steps,
            beta1=opt.adam_beta1,
            beta2=opt.adam_beta2,
            adagrad_accum=opt.adagrad_accumulator_init,
            decay_method=opt.decay_method,
            warmup_steps=opt.warmup_steps,
        )

    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        if (optim.method == "adam") and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model"
                + " but optimizer state is empty"
            )

    return optim 
开发者ID:microsoft,项目名称:nlp-recipes,代码行数:47,代码来源:optimizers.py


注:本文中的torch.optim.set_parameters方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。