本文整理汇总了Python中torch.optim.lr_scheduler._LRScheduler方法的典型用法代码示例。如果您正苦于以下问题:Python lr_scheduler._LRScheduler方法的具体用法?Python lr_scheduler._LRScheduler怎么用?Python lr_scheduler._LRScheduler使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.optim.lr_scheduler
的用法示例。
在下文中一共展示了lr_scheduler._LRScheduler方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def load(self, path_to_checkpoint: str, optimizer: Optimizer = None, scheduler: _LRScheduler = None) -> 'Model':
checkpoint = torch.load(path_to_checkpoint)
self.load_state_dict(checkpoint['state_dict'])
# model_dict = self.state_dict()
# pretrained_dict = {k: v for k, v in checkpoint.items() if k in model_dict} # filter out unnecessary keys
# model_dict.update(pretrained_dict)
# self.load_state_dict(model_dict)
# torch.nn.DataParallel(self).cuda()
#step = checkpoint['step']
step=0
# if optimizer is not None:
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# if scheduler is not None:
# scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
return step
示例2: checkpoint_model
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def checkpoint_model(
self,
model: EmmentalModel,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
metric_dict: Dict[str, float],
) -> None:
"""Checkpoint the model.
Args:
model: The model to checkpoint.
optimizer: The optimizer used during training process.
lr_scheduler: Learning rate scheduler.
metric_dict: the metric dict.
"""
self.checkpointer.checkpoint(
self.unit_total, model, optimizer, lr_scheduler, metric_dict
)
示例3: __init__
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def __init__(self, config: Config, optimizer):
super().__init__(config)
name = config.get("train.lr_scheduler")
args = config.get("train.lr_scheduler_args")
self._lr_scheduler: _LRScheduler = None
if name != "":
try:
self._lr_scheduler = getattr(torch.optim.lr_scheduler, name)(
optimizer, **args
)
except Exception as e:
raise ValueError(
(
"Invalid LR scheduler {} or scheduler arguments {}. "
"Error: {}"
).format(name, args, e)
)
self._metric_based = name in ["ReduceLROnPlateau"]
示例4: __init__
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def __init__(self, lr_scheduler, save_history=False, **kwds):
if not isinstance(lr_scheduler, _LRScheduler):
raise TypeError("Argument lr_scheduler should be a subclass of torch.optim.lr_scheduler._LRScheduler, "
"but given {}".format(type(lr_scheduler)))
if len(lr_scheduler.optimizer.param_groups) > 1:
raise ValueError("Optimizer passed to lr_scheduler should have a single param group, "
"but currently there are {} param groups".format(len(lr_scheduler.optimizer.param_groups)))
self.lr_scheduler = lr_scheduler
super(LRScheduler, self).__init__(
optimizer=self.lr_scheduler.optimizer,
param_name='lr',
save_history=save_history
)
示例5: simulate_values
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def simulate_values(cls, num_events, lr_scheduler, **kwargs):
"""Method to simulate scheduled values during num_events events.
Args:
num_events (int): number of events during the simulation.
lr_scheduler (subclass of `torch.optim.lr_scheduler._LRScheduler`): lr_scheduler object to wrap.
Returns:
list of pairs: [event_index, value]
"""
copy_lr_scheduler = LRScheduler._copy_lr_scheduler(lr_scheduler)
values = []
scheduler = cls(save_history=False, lr_scheduler=copy_lr_scheduler)
for i in range(num_events):
scheduler(engine=None)
values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]])
return values
示例6: save
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def save(self, path_to_checkpoints_dir: str, step: int, optimizer: Optimizer, scheduler: _LRScheduler) -> str:
path_to_checkpoint = os.path.join(path_to_checkpoints_dir, f'model-{step}.pth')
checkpoint = {
'state_dict': self.state_dict(),
'step': step,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(checkpoint, path_to_checkpoint)
return path_to_checkpoint
示例7: load
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def load(self, path_to_checkpoint: str, optimizer: Optimizer = None, scheduler: _LRScheduler = None) -> 'Model':
checkpoint = torch.load(path_to_checkpoint)
self.load_state_dict(checkpoint['state_dict'])
step = checkpoint['step']
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
return step
示例8: save
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def save(self, path_to_checkpoints_dir: str, step: int, optimizer: Optimizer, scheduler: _LRScheduler) -> str:
path_to_checkpoint = os.path.join(path_to_checkpoints_dir, 'model-{}.pth'.format(step))
checkpoint = {
'state_dict': self.state_dict(),
'step': step,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(checkpoint, path_to_checkpoint)
return path_to_checkpoint
#
示例9: collect_state_dict
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def collect_state_dict(
self,
iteration: Union[float, int],
model: EmmentalModel,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
metric_dict: Dict[str, float],
) -> Dict[str, Any]:
"""Collect the state dict of the model.
Args:
iteration: The current iteration.
model: The model to checkpoint.
optimizer: The optimizer used during training process.
lr_scheduler: Learning rate scheduler.
metric_dict: the metric dict.
Returns:
The state dict.
"""
model_params = {
"name": model.name,
"module_pool": model.collect_state_dict(),
# "task_names": model.task_names,
# "task_flows": model.task_flows,
# "loss_funcs": model.loss_funcs,
# "output_funcs": model.output_funcs,
# "scorers": model.scorers,
}
state_dict = {
"iteration": iteration,
"model": model_params,
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict() if lr_scheduler else None,
"metric_dict": metric_dict,
}
return state_dict
示例10: get_lr
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def get_lr(self):
"""Get updated learning rate."""
# HACK: We need to check if this is the first time ``self.get_lr()`` was called,
# since ``torch.optim.lr_scheduler._LRScheduler`` will call ``self.get_lr()``
# when first initialized, but the learning rate should remain unchanged
# for the first epoch.
if not self._initialized:
self._initialized = True
return self.base_lrs
step = self.last_epoch + 1
self._cycle_counter = step - self._last_restart
lrs = [
self.eta_min + ((lr - self.eta_min) / 2) * (
np.cos(
np.pi *
(self._cycle_counter % self._updated_cycle_len) / self._updated_cycle_len
) + 1
) for lr in self.base_lrs
]
if self._cycle_counter % self._updated_cycle_len == 0:
# Adjust the cycle length.
self._cycle_factor *= self.factor
self._cycle_counter = 0
self._updated_cycle_len = int(self._cycle_factor * self.t_max)
self._last_restart = step
return lrs
示例11: maybe_update_lr
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def maybe_update_lr(self):
# maybe update learning rate
if self.lr_scheduler is not None:
assert isinstance(self.lr_scheduler, (lr_scheduler.ReduceLROnPlateau, lr_scheduler._LRScheduler))
if isinstance(self.lr_scheduler, lr_scheduler.ReduceLROnPlateau):
# lr scheduler is updated with moving average val loss. should be more robust
self.lr_scheduler.step(self.train_loss_MA)
else:
self.lr_scheduler.step(self.epoch + 1)
self.print_to_log_file("lr is now (scheduler) %s" % str(self.optimizer.param_groups[0]['lr']))
示例12: maybe_update_lr
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def maybe_update_lr(self, epoch=None):
# maybe update learning rate
if self.lr_scheduler is not None:
assert isinstance(self.lr_scheduler, (lr_scheduler.ReduceLROnPlateau, lr_scheduler._LRScheduler))
if isinstance(self.lr_scheduler, lr_scheduler.ReduceLROnPlateau):
# lr scheduler is updated with moving average val loss. should be more robust
if self.epoch > 0: # otherwise self.train_loss_MA is None
self.lr_scheduler.step(self.train_loss_MA)
else:
self.lr_scheduler.step(self.epoch + 1)
self.print_to_log_file("lr is now (scheduler) %s" % str(self.optimizer.param_groups[0]['lr']))
示例13: maybe_update_lr
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def maybe_update_lr(self, epoch=None):
# maybe update learning rate
if self.lr_scheduler is not None:
assert isinstance(self.lr_scheduler, (lr_scheduler.ReduceLROnPlateau, lr_scheduler._LRScheduler))
if isinstance(self.lr_scheduler, lr_scheduler.ReduceLROnPlateau):
# lr scheduler is updated with moving average val loss. should be more robust
if self.epoch > 0 and self.train_loss_MA is not None: # otherwise self.train_loss_MA is None
self.lr_scheduler.step(self.train_loss_MA)
else:
self.lr_scheduler.step(self.epoch + 1)
self.print_to_log_file("lr is now (scheduler) %s" % str(self.optimizer.param_groups[0]['lr']))
示例14: __init__
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def __init__(self, lr_scheduler, save_history=False, **kwargs):
if not isinstance(lr_scheduler, _LRScheduler):
raise TypeError(
"Argument lr_scheduler should be a subclass of torch.optim.lr_scheduler._LRScheduler, "
"but given {}".format(type(lr_scheduler))
)
self.lr_scheduler = lr_scheduler
super(LRScheduler, self).__init__(
optimizer=self.lr_scheduler.optimizer, param_name="lr", save_history=save_history
)
self._state_attrs += [
"lr_scheduler",
]
示例15: simulate_values
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import _LRScheduler [as 别名]
def simulate_values(cls, num_events, lr_scheduler, **kwargs):
"""Method to simulate scheduled values during num_events events.
Args:
num_events (int): number of events during the simulation.
lr_scheduler (subclass of `torch.optim.lr_scheduler._LRScheduler`): lr_scheduler object to wrap.
Returns:
list of pairs: [event_index, value]
"""
if not isinstance(lr_scheduler, _LRScheduler):
raise TypeError(
"Argument lr_scheduler should be a subclass of torch.optim.lr_scheduler._LRScheduler, "
"but given {}".format(type(lr_scheduler))
)
# This scheduler uses `torch.optim.lr_scheduler._LRScheduler` which
# should be replicated in order to simulate LR values and
# not perturb original scheduler.
with tempfile.TemporaryDirectory() as tmpdirname:
cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt"
obj = {
"lr_scheduler": lr_scheduler.state_dict(),
"optimizer": lr_scheduler.optimizer.state_dict(),
}
torch.save(obj, cache_filepath.as_posix())
values = []
scheduler = cls(save_history=False, lr_scheduler=lr_scheduler, **kwargs)
for i in range(num_events):
params = [p[scheduler.param_name] for p in scheduler.optimizer_param_groups]
values.append([i] + params)
scheduler(engine=None)
obj = torch.load(cache_filepath.as_posix())
lr_scheduler.load_state_dict(obj["lr_scheduler"])
lr_scheduler.optimizer.load_state_dict(obj["optimizer"])
return values