本文整理汇总了Python中torch.optim.lr_scheduler.MultiStepLR方法的典型用法代码示例。如果您正苦于以下问题:Python lr_scheduler.MultiStepLR方法的具体用法?Python lr_scheduler.MultiStepLR怎么用?Python lr_scheduler.MultiStepLR使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.optim.lr_scheduler
的用法示例。
在下文中一共展示了lr_scheduler.MultiStepLR方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_lr_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def create_lr_scheduler(optimizer, config):
if config.lr_scheduler == 'cos':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
T_max=config.epochs,
eta_min=config.min_lr)
elif config.lr_scheduler == 'multistep':
if config.steps is None: return None
if isinstance(config.steps, int): config.steps = [config.steps]
scheduler = lr_scheduler.MultiStepLR(optimizer,
milestones=config.steps,
gamma=config.gamma)
elif config.lr_scheduler == 'exp-warmup':
lr_lambda = exp_warmup(config.rampup_length,
config.rampdown_length,
config.epochs)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
elif config.lr_scheduler == 'none':
scheduler = None
else:
raise ValueError("No such scheduler: {}".format(config.lr_scheduler))
return scheduler
示例2: train
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def train(args, dataloader, model):
epoch = 1
optimizer = optim.Adam(list(model.parameters()), lr=args.lr)
scheduler = MultiStepLR(optimizer, milestones=LR_milestones, gamma=args.lr)
model.train()
for epoch in range(5000):
for batch_idx, data in enumerate(dataloader):
model.zero_grad()
features = data['features'].float()
adj_input = data['adj'].float()
features = Variable(features).cuda()
adj_input = Variable(adj_input).cuda()
loss = model(features, adj_input)
print('Epoch: ', epoch, ', Iter: ', batch_idx, ', Loss: ', loss)
loss.backward()
optimizer.step()
scheduler.step()
break
示例3: __init__
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def __init__(self):
self.log_dir = settings.log_dir
self.model_dir = settings.model_dir
ensure_dir(settings.log_dir)
ensure_dir(settings.model_dir)
logger.info('set log dir as %s' % settings.log_dir)
logger.info('set model dir as %s' % settings.model_dir)
self.net = RESCAN().cuda()
self.crit = MSELoss().cuda()
self.ssim = SSIM().cuda()
self.step = 0
self.save_steps = settings.save_steps
self.num_workers = settings.num_workers
self.batch_size = settings.batch_size
self.writers = {}
self.dataloaders = {}
self.opt = Adam(self.net.parameters(), lr=settings.lr)
self.sche = MultiStepLR(self.opt, milestones=[15000, 17500], gamma=0.1)
示例4: train_classifiers
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def train_classifiers(model, learning_rate, dataset, train_loader,
test_loader, stat_tracker, checkpointer, log_dir, device):
# retrain the evaluation classifiers using the trained feature encoder
for mod in model.class_modules:
# reset params in the evaluation classifiers
mod.apply(weight_init)
mods_to_opt = [m for m in model.class_modules]
# configure optimizer
optimizer = optim.Adam(
[{'params': mod.parameters(), 'lr': learning_rate} for mod in mods_to_opt],
betas=(0.8, 0.999), weight_decay=1e-5, eps=1e-8)
# configure learning rate schedulers
if dataset in [Dataset.C10, Dataset.C100, Dataset.STL10]:
scheduler = MultiStepLR(optimizer, milestones=[80, 110], gamma=0.2)
epochs = 120
elif dataset == Dataset.IN128:
scheduler = MultiStepLR(optimizer, milestones=[15, 25], gamma=0.2)
epochs = 30
elif dataset == Dataset.PLACES205:
scheduler = MultiStepLR(optimizer, milestones=[7, 12], gamma=0.2)
epochs = 15
# retrain the model
_train(model, optimizer, scheduler, checkpointer, epochs, train_loader,
test_loader, stat_tracker, log_dir, device)
示例5: train_self_supervised
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def train_self_supervised(model, learning_rate, dataset, train_loader,
test_loader, stat_tracker, checkpointer, log_dir, device):
# configure optimizer
mods_inf = [m for m in model.info_modules]
mods_cls = [m for m in model.class_modules]
mods_to_opt = mods_inf + mods_cls
optimizer = optim.Adam(
[{'params': mod.parameters(), 'lr': learning_rate} for mod in mods_to_opt],
betas=(0.8, 0.999), weight_decay=1e-5, eps=1e-8)
# configure learning rate schedulers for the optimizers
if dataset in [Dataset.C10, Dataset.C100, Dataset.STL10]:
scheduler = MultiStepLR(optimizer, milestones=[250, 280], gamma=0.2)
epochs = 300
else:
# best imagenet results use longer schedules...
# -- e.g., milestones=[60, 90], epochs=100
scheduler = MultiStepLR(optimizer, milestones=[30, 45], gamma=0.2)
epochs = 50
# train the model
_train(model, optimizer, scheduler, checkpointer, epochs,
train_loader, test_loader, stat_tracker, log_dir, device)
示例6: make_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def make_scheduler(args, my_optimizer):
if args.decay_type == 'step':
scheduler = lrs.StepLR(
my_optimizer,
step_size=args.lr_decay,
gamma=args.gamma
)
elif args.decay_type.find('step') >= 0:
milestones = args.decay_type.split('_')
milestones.pop(0)
milestones = list(map(lambda x: int(x), milestones))
scheduler = lrs.MultiStepLR(
my_optimizer,
milestones=milestones,
gamma=args.gamma
)
return scheduler
示例7: get_lr_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def get_lr_scheduler(optimizer_conf, scheduler_name, optimizer, initial_epoch=-1):
if scheduler_name == 'multistep':
return lr_scheduler.MultiStepLR(optimizer,
optimizer_conf.decay_steps,
optimizer_conf.decay_factor,
initial_epoch)
elif scheduler_name == 'linear' or scheduler_name == 'polynomial':
power = 1.0 if scheduler_name == 'linear' else optimizer_conf.decay_power
lr_lambda = _get_polynomial_decay(optimizer_conf.learning_rate,
optimizer_conf.end_learning_rate,
optimizer_conf.decay_steps,
optimizer_conf.get_attr('start_decay',
default=0),
power)
return lr_scheduler.LambdaLR(optimizer, lr_lambda, initial_epoch)
else:
raise ValueError('Unknown learning rate scheduler {}'.format(scheduler_name))
示例8: Baseline_train
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
if epoch % args.update_interval==0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例9: train
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def train(model, train_loader, args):
optimizer = Adam(model.parameters(), lr=args.lr)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
criterion=nn.CrossEntropyLoss().cuda(device)
for epoch in range(args.epochs):
loss_record = AverageMeter()
acc_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, (x, label, _) in enumerate(train_loader):
x, target = x.to(device), label.to(device)
optimizer.zero_grad()
_, output= model(x)
loss = criterion(output, target)
acc = accuracy(output, target)
loss.backward()
optimizer.step()
acc_record.update(acc[0].item(), x.size(0))
loss_record.update(loss.item(), x.size(0))
print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
test(model, eva_loader, args)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例10: Baseline_train
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args, epoch)
if epoch % args.update_interval==0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例11: train
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def train(model, train_loader, args):
optimizer = Adam(model.parameters(), lr=args.lr)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
criterion=nn.CrossEntropyLoss().cuda(device)
for epoch in range(args.epochs):
loss_record = AverageMeter()
acc_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, (x, label, _) in enumerate(train_loader):
x, target = x.to(device), label.to(device)
optimizer.zero_grad()
output= model(x)
loss = criterion(output, target)
acc = accuracy(output, target)
loss.backward()
optimizer.step()
acc_record.update(acc[0].item(), x.size(0))
loss_record.update(loss.item(), x.size(0))
print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
test(model, eva_loader, args)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例12: make_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def make_scheduler(args, my_optimizer):
if args.decay_type == 'step':
scheduler = lrs.StepLR(
my_optimizer,
step_size=args.lr_decay,
gamma=args.gamma
)
if args.decay_type.find('step') >= 0:
milestones = args.decay_type.split('_')
milestones.pop(0)
milestones = list(map(lambda x: int(x), milestones))
print(milestones)
scheduler = lrs.MultiStepLR(
my_optimizer,
milestones=milestones,
gamma=args.gamma
)
if args.decay_type == 'restart':
scheduler = lrs.LambdaLR(my_optimizer, lambda epoch: multistep_restart(args.period, epoch))
return scheduler
示例13: __init__
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def __init__(self, *, milestones, gamma=0.1, last_epoch=-1):
"""Decays the learning rate of each parameter group by gamma once the
number of epoch reaches one of the milestones. Notice that such decay can
happen simultaneously with other changes to the learning rate from outside
this scheduler. When last_epoch=-1, sets initial lr as lr.
Args:
milestones (list): List of epoch indices. Must be increasing.
gamma (float): Multiplicative factor of learning rate decay.
Default: 0.1.
last_epoch (int): The index of last epoch. Default: -1.
Example:
>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.05 if epoch < 30
>>> # lr = 0.005 if 30 <= epoch < 80
>>> # lr = 0.0005 if epoch >= 80
>>> scheduler = MultiStepLR(milestones=[30,80], gamma=0.1)
>>> scheduler(optimizer)
>>> for epoch in range(100):
>>> train(...)
>>> validate(...)
>>> scheduler.step(),
"""
super().__init__(lr_scheduler.MultiStepLR, milestones=milestones, gamma=gamma, last_epoch=last_epoch)
示例14: create_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def create_scheduler(args, optimizer, datasets):
if args.scheduler == 'step':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=eval(args.milestones), gamma=args.lr_decay)
elif args.scheduler == 'poly':
total_step = (len(datasets['train']) / args.batch + 1) * args.epochs
scheduler = lr_scheduler.LambdaLR(optimizer, lambda x: (1-x/total_step) ** args.power)
elif args.scheduler == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=args.lr_decay, patience=args.patience)
elif args.scheduler == 'constant':
scheduler = lr_scheduler.LambdaLR(optimizer, lambda x: 1)
elif args.scheduler == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, args.T_max, args.min_lr)
return scheduler
示例15: configure_lr_scheduler
# 需要导入模块: from torch.optim import lr_scheduler [as 别名]
# 或者: from torch.optim.lr_scheduler import MultiStepLR [as 别名]
def configure_lr_scheduler(self, optimizer, cfg):
if cfg.SCHEDULER == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=cfg.STEPS[0], gamma=cfg.GAMMA)
elif cfg.SCHEDULER == 'multi_step':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=cfg.STEPS, gamma=cfg.GAMMA)
elif cfg.SCHEDULER == 'exponential':
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=cfg.GAMMA)
elif cfg.SCHEDULER == 'SGDR':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.MAX_EPOCHS)
else:
AssertionError('scheduler can not be recognized.')
return scheduler