本文整理汇总了Python中torch.optim方法的典型用法代码示例。如果您正苦于以下问题:Python torch.optim方法的具体用法?Python torch.optim怎么用?Python torch.optim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.optim方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: construct_graph
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def construct_graph(self):
# Set the random seed
torch.manual_seed(cfg.RNG_SEED)
# Build the main computation graph
self.net.create_architecture(self.imdb.num_classes, tag='default')
# Define the loss
# loss = layers['total_loss']
# Set learning rate and momentum
lr = cfg.TRAIN.LEARNING_RATE
params = []
for key, value in dict(self.net.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
self.optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
# Write the train and validation information to tensorboard
self.writer = tb.writer.FileWriter(self.tbdir)
# self.valwriter = tb.writer.FileWriter(self.tbvaldir)
return lr, self.optimizer
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:24,代码来源:train_val.py
示例2: restore
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def restore(self, modules, ckpt_p, strict=True, restore_restart=False):
print('Restoring {}... (strict={})'.format(ckpt_p, strict))
map_location = None if pe.CUDA_AVAILABLE else 'cpu'
state_dicts = torch.load(ckpt_p, map_location=map_location)
# ---
for key, m in modules.items():
# optim implements its own load_state_dict which does not have the `strict` keyword...
if isinstance(m, optimizer.Optimizer):
if restore_restart:
print('Not restoring optimizer, --restore_restart given...')
else:
try:
m.load_state_dict(state_dicts[key])
except ValueError as e:
raise ValueError('Error while restoring Optimizer:', str(e))
else:
try:
m.load_state_dict(state_dicts[key], strict=strict)
except RuntimeError as e: # loading error
for n, module in sorted(m.named_modules()):
print(n, module)
raise e
return self.get_itr_from_ckpt_p(ckpt_p)
示例3: fit
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def fit(self, observations, labels):
def closure():
predicted = self.predict(observations)
loss = self.loss_fn(predicted, labels)
self.optimizer.zero_grad()
loss.backward()
return loss
old_params = parameters_to_vector(self.model.parameters())
for lr in self.lr * .5**np.arange(10):
self.optimizer = optim.LBFGS(self.model.parameters(), lr=lr)
self.optimizer.step(closure)
current_params = parameters_to_vector(self.model.parameters())
if any(np.isnan(current_params.data.cpu().numpy())):
print("LBFGS optimization diverged. Rolling back update...")
vector_to_parameters(old_params, self.model.parameters())
else:
return
示例4: main
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def main():
best_acc = 0
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('==> Preparing data..')
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
dataset_train = CIFAR10(root='../data', train=True, download=True,
transform=transforms_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_worker)
# there are 10 classes so the dataset name is cifar-10
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
print('==> Making model..')
net = pyramidnet()
net = nn.DataParallel(net)
net = net.to(device)
num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
print('The number of parameters of model is', num_params)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
# optimizer = optim.SGD(net.parameters(), lr=args.lr,
# momentum=0.9, weight_decay=1e-4)
train(net, criterion, optimizer, train_loader, device)
示例5: imitating
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def imitating(self, epoch):
"""
train the user simulator by simple imitation learning (behavioral cloning)
"""
self.user.train()
a_loss, t_loss = 0., 0.
data_train_iter = batch_iter(self.data_train[0], self.data_train[1], self.data_train[2], self.data_train[3])
for i, data in enumerate(data_train_iter):
self.optim.zero_grad()
loss_a, loss_t = self.user_loop(data)
a_loss += loss_a.item()
t_loss += loss_t.item()
loss = loss_a + loss_t
loss.backward()
self.optim.step()
if (i+1) % self.print_per_batch == 0:
a_loss /= self.print_per_batch
t_loss /= self.print_per_batch
logging.debug('<<user simulator>> epoch {}, iter {}, loss_a:{}, loss_t:{}'.format(epoch, i, a_loss, t_loss))
a_loss, t_loss = 0., 0.
if (epoch+1) % self.save_per_epoch == 0:
self.save(self.save_dir, epoch)
self.user.eval()
示例6: save_algorithm
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def save_algorithm(algorithm, ckpt=None):
'''Save all the nets for an algorithm'''
agent = algorithm.agent
net_names = algorithm.net_names
model_prepath = agent.spec['meta']['model_prepath']
if ckpt is not None:
model_prepath = f'{model_prepath}_ckpt-{ckpt}'
for net_name in net_names:
net = getattr(algorithm, net_name)
model_path = f'{model_prepath}_{net_name}_model.pt'
save(net, model_path)
optim_name = net_name.replace('net', 'optim')
optim = getattr(algorithm, optim_name, None)
if optim is not None: # only trainable net has optim
optim_path = f'{model_prepath}_{net_name}_optim.pt'
save(optim, optim_path)
logger.debug(f'Saved algorithm {util.get_class_name(algorithm)} nets {net_names} to {model_prepath}_*.pt')
示例7: load_algorithm
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def load_algorithm(algorithm):
'''Save all the nets for an algorithm'''
agent = algorithm.agent
net_names = algorithm.net_names
if util.in_eval_lab_modes():
# load specific model in eval mode
model_prepath = agent.spec['meta']['eval_model_prepath']
else:
model_prepath = agent.spec['meta']['model_prepath']
logger.info(f'Loading algorithm {util.get_class_name(algorithm)} nets {net_names} from {model_prepath}_*.pt')
for net_name in net_names:
net = getattr(algorithm, net_name)
model_path = f'{model_prepath}_{net_name}_model.pt'
load(net, model_path)
optim_name = net_name.replace('net', 'optim')
optim = getattr(algorithm, optim_name, None)
if optim is not None: # only trainable net has optim
optim_path = f'{model_prepath}_{net_name}_optim.pt'
load(optim, optim_path)
示例8: get_optimizer
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def get_optimizer(gradient_model, config):
if config['support'].get('flexible_step', False):
stop_parameters = list(filter(lambda p: p.requires_grad, gradient_model.stop_gate.parameters()))
else:
stop_parameters = []
init_parameters = list(filter(lambda p: p.requires_grad, gradient_model.model.parameters()))
update_parameters = list(filter(lambda p: p.requires_grad, gradient_model.meta_lstms.parameters()))
parameters = [
{'params': init_parameters, 'lr': config['lr']['init_lr']},
{'params': update_parameters, 'lr': config['lr']['update_lr']},
{'params': stop_parameters, 'lr': config['lr']['stop_lr']}
]
optimizer = optim.Adam(parameters, **config['optim'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.2, patience=2,
verbose=True, min_lr=1e-6)
return optimizer, scheduler
示例9: train_network
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def train_network(start_epoch, epochs, optim, model, train_loader, val_loader, criterion, mixup, device, dtype,
batch_size, log_interval, csv_logger, save_path, claimed_acc1, claimed_acc5, best_test, local_rank,
child):
my_range = range if child else trange
for epoch in my_range(start_epoch, epochs + 1):
train_loss, train_accuracy1, train_accuracy5, = train(model, train_loader, mixup, epoch, optim, criterion,
device, dtype, batch_size, log_interval, child)
test_loss, test_accuracy1, test_accuracy5 = test(model, val_loader, criterion, device, dtype, child)
optim.epoch_step()
csv_logger.write({'epoch': epoch + 1, 'val_error1': 1 - test_accuracy1, 'val_error5': 1 - test_accuracy5,
'val_loss': test_loss, 'train_error1': 1 - train_accuracy1,
'train_error5': 1 - train_accuracy5, 'train_loss': train_loss})
save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_test,
'optimizer': optim.state_dict()}, test_accuracy1 > best_test, filepath=save_path,
local_rank=local_rank)
# TODO: save on the end of the cycle
csv_logger.plot_progress(claimed_acc1=claimed_acc1, claimed_acc5=claimed_acc5)
if test_accuracy1 > best_test:
best_test = test_accuracy1
csv_logger.write_text('Best accuracy is {:.2f}% top-1'.format(best_test * 100.))
示例10: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def __init__(self, args):
self.args = args
# ------------------------------------------------Dataset---------------------------------------------- #
self.data = BenchmarkDataset(root=args.dataset_path, npoints=args.point_num, uniform=True, class_choice=args.class_choice)
self.dataLoader = torch.utils.data.DataLoader(self.data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=4)
print("Training Dataset : {} prepared.".format(len(self.data)))
# ----------------------------------------------------------------------------------------------------- #
# -------------------------------------------------Module---------------------------------------------- #
self.G = Generator(batch_size=args.batch_size, features=args.G_FEAT, degrees=args.DEGREE, support=args.support).to(args.device)
self.D = Discriminator(batch_size=args.batch_size, features=args.D_FEAT).to(args.device)
self.optimizerG = optim.Adam(self.G.parameters(), lr=args.lr, betas=(0, 0.99))
self.optimizerD = optim.Adam(self.D.parameters(), lr=args.lr, betas=(0, 0.99))
self.GP = GradientPenalty(args.lambdaGP, gamma=1, device=args.device)
print("Network prepared.")
# ----------------------------------------------------------------------------------------------------- #
# ---------------------------------------------Visualization------------------------------------------- #
self.vis = visdom.Visdom(port=args.visdom_port)
assert self.vis.check_connection()
print("Visdom connected.")
# ----------------------------------------------------------------------------------------------------- #
示例11: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def __init__(self, config, net):
self.log_dir = config.log_dir
self.model_dir = config.model_dir
self.net = net
self.clock = TrainClock()
self.device = config.device
self.use_triplet = config.use_triplet
self.use_footvel_loss = config.use_footvel_loss
# set loss function
self.mse = nn.MSELoss()
self.tripletloss = nn.TripletMarginLoss(margin=config.triplet_margin)
self.triplet_weight = config.triplet_weight
self.foot_idx = config.foot_idx
self.footvel_loss_weight = config.footvel_loss_weight
# set optimizer
self.optimizer = optim.Adam(self.net.parameters(), config.lr)
self.scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, 0.99)
示例12: get_network
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def get_network(net_type, params, train=True):
net_params = params[net_type]
net = net_params['network'](net_params['input_channel'],
net_params['channels'],
net_params['output_channel'])
if params['GPU']:
net.cuda()
if train:
net.train()
optimizer = optim.Adam(net.parameters(),
lr=params['lr'],
betas=(params['beta1'], params['beta2']))
else:
net.eval()
net.load_state_dict(torch.load(net_params['model_path']))
optimizer = None
return net, optimizer
示例13: adversarial
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def adversarial(args):
train_adversarial(sess_path=args.session_path,
batch_data_generator=args.batch_generator(args),
model_load_path=args.generator_load_path,
discriminator_load_path=args.discriminator_load_path,
model_optimizer_class=getattr(optim, args.generator_optimizer),
discriminator_optimizer_class=getattr(optim, args.discriminator_optimizer),
model_gradient_clipping=args.generator_gradient_clipping,
discriminator_gradient_clipping=args.discriminator_gradient_clipping,
model_learning_rate=args.generator_learning_rate,
discriminator_learning_rate=args.discriminator_learning_rate,
reset_model_optimizer=args.reset_generator_optimizer,
reset_discriminator_optimizer=args.reset_discriminator_optimizer,
g_max_q_mean=args.g_max_q_mean,
g_min_q_mean=args.g_min_q_mean,
d_min_loss=args.d_min_loss,
g_max_steps=args.g_max_steps,
d_max_steps=args.d_max_steps,
mc_sample_size=args.monte_carlo_sample_size,
mc_sample_factor=args.monte_carlo_sample_factor,
first_to_train=args.first_to_train,
control_ratio=args.control_ratio,
save_interval=args.save_interval,
enable_logging=args.enable_logging)
示例14: loadOptimizer
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def loadOptimizer(self, network, config_dict):
params_all_id = list(map(id, network.parameters()))
params_posenet_id = list(map(id, network.to_pose.parameters()))
params_toOptimize = [p for p in network.parameters() if id(p) in params_posenet_id]
params_static_id = [id_p for id_p in params_all_id if not id_p in params_posenet_id]
# disable gradient computation for static params, saves memory and computation
for p in network.parameters():
if id(p) in params_static_id:
p.requires_grad = False
print("Normal learning rate: {} params".format(len(params_posenet_id)))
print("Static learning rate: {} params".format(len(params_static_id)))
print("Total: {} params".format(len(params_all_id)))
opt_params = [{'params': params_toOptimize, 'lr': config_dict['learning_rate']}]
optimizer = torch.optim.Adam(opt_params, lr=config_dict['learning_rate']) #weight_decay=0.0005
return optimizer
开发者ID:hrhodin,项目名称:UnsupervisedGeometryAwareRepresentationLearning,代码行数:21,代码来源:train_encodeDecode_pose.py
示例15: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import optim [as 别名]
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.replay_buffer = Replay_buffer()
self.writer = SummaryWriter(directory)
self.num_critic_update_iteration = 0
self.num_actor_update_iteration = 0
self.num_training = 0