当前位置: 首页>>代码示例>>Python>>正文


Python optim.SparseAdam方法代码示例

本文整理汇总了Python中torch.optim.SparseAdam方法的典型用法代码示例。如果您正苦于以下问题:Python optim.SparseAdam方法的具体用法?Python optim.SparseAdam怎么用?Python optim.SparseAdam使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.optim的用法示例。


在下文中一共展示了optim.SparseAdam方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def __init__(self, *, lr=0.001, betas=(0.9, 0.999), eps=1e-08):
        r"""Implements lazy version of Adam algorithm suitable for sparse tensors.

        In this variant, only moments that show up in the gradient get updated, and
        only those portions of the gradient get applied to the parameters.

        Arguments:
            lr (float, optional): learning rate (default: 1e-3)
            betas (Tuple[float, float], optional): coefficients used for computing
                running averages of gradient and its square (default: (0.9, 0.999))
            eps (float, optional): term added to the denominator to improve
                numerical stability (default: 1e-8)

        .. _Adam\: A Method for Stochastic Optimization:
            https://arxiv.org/abs/1412.6980
        """

        super().__init__(optim.SparseAdam, lr=lr, betas=betas, eps=eps) 
开发者ID:yoshida-lab,项目名称:XenonPy,代码行数:20,代码来源:optimizer.py

示例2: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def set_parameters(self, params):
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.lr,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.lr,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:32,代码来源:Optim.py

示例3: train

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def train(self):

        for iteration in range(self.iterations):
            print("\n\n\nIteration: " + str(iteration + 1))
            optimizer = optim.SparseAdam(self.skip_gram_model.parameters(), lr=self.initial_lr)
            scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader))

            running_loss = 0.0
            for i, sample_batched in enumerate(tqdm(self.dataloader)):

                if len(sample_batched[0]) > 1:
                    pos_u = sample_batched[0].to(self.device)
                    pos_v = sample_batched[1].to(self.device)
                    neg_v = sample_batched[2].to(self.device)

                    scheduler.step()
                    optimizer.zero_grad()
                    loss = self.skip_gram_model.forward(pos_u, pos_v, neg_v)
                    loss.backward()
                    optimizer.step()

                    running_loss = running_loss * 0.9 + loss.item() * 0.1
                    if i > 0 and i % 500 == 0:
                        print(" Loss: " + str(running_loss))

            self.skip_gram_model.save_embedding(self.data.id2word, self.output_file_name) 
开发者ID:dmlc,项目名称:dgl,代码行数:28,代码来源:metapath2vec.py

示例4: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def set_parameters(self, model):
        """ ? """
        params = [p for p in model.parameters() if p.requires_grad]
        if self.method == 'sgd':
            self.optimizer = optim.SGD(params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(
                self.params,
                lr=self.learning_rate,
                initial_accumulator_value=self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(params, lr=self.learning_rate)
        elif self.method == 'adafactor':
            self.optimizer = AdaFactor(params, non_constant_decay=True,
                                       enable_factorization=True,
                                       weight_decay=0)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            dense = []
            sparse = []
            for name, param in model.named_parameters():
                if not param.requires_grad:
                    continue
                # TODO: Find a better way to check for sparse gradients.
                if 'embed' in name:
                    sparse.append(param)
                else:
                    dense.append(param)
            self.optimizer = MultipleOptimizer(
                [optim.Adam(dense, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(sparse, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:lizekang,项目名称:ITDD,代码行数:39,代码来源:optimizers.py

示例5: optimizer_class

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def optimizer_class(name):
    if name == 'sgd':
        OptimizerClass = optim.SGD
    elif name == 'adagrad':
        OptimizerClass = optim.Adagrad
    elif name == 'adadelta':
        OptimizerClass = optim.Adadelta
    elif name == 'adam':
        OptimizerClass = optim.Adam
    elif name == 'sparseadam':
        OptimizerClass = optim.SparseAdam
    else:
        raise RuntimeError("Invalid optim method: " + name)
    return OptimizerClass 
开发者ID:Unbabel,项目名称:OpenKiwi,代码行数:16,代码来源:utils.py

示例6: get_optimiser

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def get_optimiser(name, net_params, optim_params):
    lr = optim_params['learning_rate']
    momentum = optim_params['momentum']
    weight_decay = optim_params['weight_decay']
    if(name == "SGD"):
        return optim.SGD(net_params, lr, 
            momentum = momentum, weight_decay = weight_decay)
    elif(name == "Adam"):
        return optim.Adam(net_params, lr, weight_decay = 1e-5)
    elif(name == "SparseAdam"):
        return optim.SparseAdam(net_params, lr)
    elif(name == "Adadelta"):
        return optim.Adadelta(net_params, lr, weight_decay = weight_decay)
    elif(name == "Adagrad"):
        return optim.Adagrad(net_params, lr, weight_decay = weight_decay)
    elif(name == "Adamax"):
        return optim.Adamax(net_params, lr, weight_decay = weight_decay)
    elif(name == "ASGD"):
        return optim.ASGD(net_params, lr, weight_decay = weight_decay)
    elif(name == "LBFGS"):
        return optim.LBFGS(net_params, lr)
    elif(name == "RMSprop"):
        return optim.RMSprop(net_params, lr, momentum = momentum,
            weight_decay = weight_decay)
    elif(name == "Rprop"):
        return optim.Rprop(net_params, lr)
    else:
        raise ValueError("unsupported optimizer {0:}".format(name)) 
开发者ID:HiLab-git,项目名称:PyMIC,代码行数:30,代码来源:get_optimizer.py

示例7: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-8, weight_decay=3e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:jcyk,项目名称:gtos,代码行数:33,代码来源:optimizer.py

示例8: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:nlpyang,项目名称:BertSum,代码行数:33,代码来源:optimizers.py

示例9: train

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def train(self):

        for iteration in range(self.iterations):
            # print("\nIteration: " + str(iteration + 1))
            optimizer = optim.SparseAdam(self.skip_gram_model.parameters(), lr=self.initial_lr)

            scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader))
            running_loss = 0.0
            epoch_loss = 0.0

            n = 0
            for i, sample_batched in enumerate(self.dataloader):

                if len(sample_batched[0]) > 1:
                    pos_u = sample_batched[0].to(self.device)

                    pos_v = sample_batched[1].to(self.device)

                    neg_v = sample_batched[2].to(self.device)

                    scheduler.step()

                    optimizer.zero_grad()

                    loss = self.skip_gram_model.forward(pos_u, pos_v, neg_v)

                    loss.backward()

                    optimizer.step()
                    # running_loss = running_loss * 0.9 + loss.item() * 0.1
                    epoch_loss += loss.item()
                    # if i > 0 and i % 50 == 0:

                    #     print(" Loss: " + str(running_loss))
                    n = i
            print("epoch:" + str(iteration) + " Loss: " + str(epoch_loss / n))

            self.skip_gram_model.save_embedding(self.data.id2word, self.output_file_name) 
开发者ID:BUPTDM,项目名称:OpenHINE,代码行数:40,代码来源:Metapath2vec.py

示例10: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def set_parameters(self, params):
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
                    print("Sparse parameter {}".format(k))
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr,
                                        betas=self.betas, eps=self.eps)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.lr,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.lr,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:harvardnlp,项目名称:var-attn,代码行数:33,代码来源:Optim.py

示例11: _set_optimizer

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def _set_optimizer(self, train_config):
        optimizer_config = train_config["optimizer_config"]
        opt = optimizer_config["optimizer"]

        # We set L2 here if the class does not implement its own L2 reg
        l2 = 0 if self.implements_l2 else train_config.get("l2", 0)

        parameters = filter(lambda p: p.requires_grad, self.parameters())
        if opt == "sgd":
            optimizer = optim.SGD(
                parameters,
                **optimizer_config["optimizer_common"],
                **optimizer_config["sgd_config"],
                weight_decay=l2,
            )
        elif opt == "rmsprop":
            optimizer = optim.RMSprop(
                parameters,
                **optimizer_config["optimizer_common"],
                **optimizer_config["rmsprop_config"],
                weight_decay=l2,
            )
        elif opt == "adam":
            optimizer = optim.Adam(
                parameters,
                **optimizer_config["optimizer_common"],
                **optimizer_config["adam_config"],
                weight_decay=l2,
            )
        elif opt == "sparseadam":
            optimizer = optim.SparseAdam(
                parameters,
                **optimizer_config["optimizer_common"],
                **optimizer_config["adam_config"],
            )
            if l2:
                raise Exception(
                    "SparseAdam optimizer does not support weight_decay (l2 penalty)."
                )
        else:
            raise ValueError(f"Did not recognize optimizer option '{opt}'")
        self.optimizer = optimizer 
开发者ID:HazyResearch,项目名称:metal,代码行数:44,代码来源:classifier.py

示例12: _set_optimizer

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import SparseAdam [as 别名]
def _set_optimizer(self, model: EmmentalModel) -> None:
        """Set optimizer for learning process.

        Args:
          model: The model to set up the optimizer.
        """
        optimizer_config = Meta.config["learner_config"]["optimizer_config"]
        opt = optimizer_config["optimizer"]

        # If Meta.config["learner_config"]["optimizer_config"]["parameters"] is None,
        # create a parameter group with all parameters in the model, else load user
        # specified parameter groups.
        if optimizer_config["parameters"] is None:
            parameters = filter(lambda p: p.requires_grad, model.parameters())
        else:
            parameters = optimizer_config["parameters"](model)

        optim_dict = {
            # PyTorch optimizer
            "asgd": optim.ASGD,  # type: ignore
            "adadelta": optim.Adadelta,  # type: ignore
            "adagrad": optim.Adagrad,  # type: ignore
            "adam": optim.Adam,  # type: ignore
            "adamw": optim.AdamW,  # type: ignore
            "adamax": optim.Adamax,  # type: ignore
            "lbfgs": optim.LBFGS,  # type: ignore
            "rms_prop": optim.RMSprop,  # type: ignore
            "r_prop": optim.Rprop,  # type: ignore
            "sgd": optim.SGD,  # type: ignore
            "sparse_adam": optim.SparseAdam,  # type: ignore
            # Customize optimizer
            "bert_adam": BertAdam,
        }

        if opt in ["lbfgs", "r_prop", "sparse_adam"]:
            optimizer = optim_dict[opt](
                parameters,
                lr=optimizer_config["lr"],
                **optimizer_config[f"{opt}_config"],
            )
        elif opt in optim_dict.keys():
            optimizer = optim_dict[opt](
                parameters,
                lr=optimizer_config["lr"],
                weight_decay=optimizer_config["l2"],
                **optimizer_config[f"{opt}_config"],
            )
        elif isinstance(opt, optim.Optimizer):  # type: ignore
            optimizer = opt(parameters)
        else:
            raise ValueError(f"Unrecognized optimizer option '{opt}'")

        self.optimizer = optimizer

        if Meta.config["meta_config"]["verbose"]:
            logger.info(f"Using optimizer {self.optimizer}") 
开发者ID:SenWu,项目名称:emmental,代码行数:58,代码来源:learner.py


注:本文中的torch.optim.SparseAdam方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。