本文整理汇总了Python中torch.onnx方法的典型用法代码示例。如果您正苦于以下问题:Python torch.onnx方法的具体用法?Python torch.onnx怎么用?Python torch.onnx使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.onnx方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pytorch2onnx
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def pytorch2onnx(args):
# PyTorch exports to ONNX without the need for an external converter
import torch
from torch.autograd import Variable
import torch.onnx
import torchvision
# Create input with the correct dimensions of the input of your model
if args.model_input_shapes == None:
raise ValueError("Please provide --model_input_shapes to convert Pytorch models.")
dummy_model_input = []
if len(args.model_input_shapes) == 1:
dummy_model_input = Variable(torch.randn(*args.model_input_shapes))
else:
for shape in args.model_input_shapes:
dummy_model_input.append(Variable(torch.randn(*shape)))
# load the PyTorch model
model = torch.load(args.model, map_location="cpu")
# export the PyTorch model as an ONNX protobuf
torch.onnx.export(model, dummy_model_input, args.output_onnx_path)
示例2: main
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def main(args):
dataset = load_config(args.dataset)
num_classes = len(dataset["common"]["classes"])
net = UNet(num_classes)
def map_location(storage, _):
return storage.cpu()
chkpt = torch.load(args.checkpoint, map_location=map_location)
net = torch.nn.DataParallel(net)
net.load_state_dict(chkpt["state_dict"])
# Todo: make input channels configurable, not hard-coded to three channels for RGB
batch = torch.autograd.Variable(torch.randn(1, 3, args.image_size, args.image_size))
torch.onnx.export(net, batch, args.model)
示例3: onnx_inference
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def onnx_inference(args):
# Load the ONNX model
model = onnx.load("models/deepspeech_{}.onnx".format(args.continue_from))
# Check that the IR is well formed
onnx.checker.check_model(model)
onnx.helper.printable_graph(model.graph)
print("model checked, preparing backend!")
rep = backend.prepare(model, device="CPU") # or "CPU"
print("running inference!")
# Hard coded input dim
inputs = np.random.randn(16, 1, 161, 129).astype(np.float32)
start = time.time()
outputs = rep.run(inputs)
print("time used: {}".format(time.time() - start))
# To run networks with more than one input, pass a tuple
# rather than a single numpy ndarray.
print(outputs[0])
示例4: stylize_onnx_caffe2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def stylize_onnx_caffe2(content_image, args):
"""
Read ONNX model and run it using Caffe2
"""
assert not args.export_onnx
import onnx
import onnx_caffe2.backend
model = onnx.load(args.model)
prepared_backend = onnx_caffe2.backend.prepare(model, device='CUDA' if args.cuda else 'CPU')
inp = {model.graph.input[0].name: content_image.numpy()}
c2_out = prepared_backend.run(inp)[0]
return torch.from_numpy(c2_out)
示例5: convert_models
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def convert_models(args):
# Quick format check
model_extension = get_extension(args.model)
if (args.model_type == "onnx" or model_extension == "onnx"):
print("Input model is already ONNX model. Skipping conversion.")
if args.model != args.output_onnx_path:
copyfile(args.model, args.output_onnx_path)
return
if converters.get(args.model_type) == None:
raise ValueError('Model type {} is not currently supported. \n\
Please select one of the following model types -\n\
cntk, coreml, keras, pytorch, scikit-learn, tensorflow'.format(args.model_type))
suffix = suffix_format_map.get(model_extension)
if suffix != None and suffix != args.model_type:
raise ValueError('model with extension {} do not come from {}'.format(model_extension, args.model_type))
# Find the corresponding converter for current model
converter = converters.get(args.model_type)
# Run converter
converter(args)
示例6: test_dcgan
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def test_dcgan(self):
# dcgan is flaky on some seeds, see:
# https://github.com/ProjectToffee/onnx/pull/70
torch.manual_seed(1)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(1)
netD = dcgan._netD(1)
netD.apply(dcgan.weights_init)
input = Variable(torch.randn(BATCH_SIZE, 3, dcgan.imgsz, dcgan.imgsz))
self.run_model_test(netD, train=False, batch_size=BATCH_SIZE,
input=input)
netG = dcgan._netG(1)
netG.apply(dcgan.weights_init)
state_dict = model_zoo.load_url(model_urls['dcgan_b'], progress=False)
# state_dict = model_zoo.load_url(model_urls['dcgan_f'], progress=False)
noise = Variable(
torch.randn(BATCH_SIZE, dcgan.nz, 1, 1).normal_(0, 1))
self.run_model_test(netG, train=False, batch_size=BATCH_SIZE,
input=noise, state_dict=state_dict, rtol=1e-2, atol=1e-6)
示例7: test_symbolic_override_nested
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def test_symbolic_override_nested(self):
def symb(g, x, y):
assert isinstance(x, torch._C.Value)
assert isinstance(y[0], torch._C.Value)
assert isinstance(y[1], torch._C.Value)
return g.op('Sum', x, y[0], y[1]), (
g.op('Neg', x), g.op('Neg', y[0]))
@torch.onnx.symbolic_override_first_arg_based(symb)
def foo(x, y):
return x + y[0] + y[1], (-x, -y[0])
class BigModule(torch.nn.Module):
def forward(self, x, y):
return foo(x, y)
inp = (Variable(torch.FloatTensor([1])),
(Variable(torch.FloatTensor([2])),
Variable(torch.FloatTensor([3]))))
BigModule()(*inp)
self.assertONNX(BigModule(), inp)
示例8: predict
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def predict():
list_of_files = glob.glob('output/models/*') # * means all if need specific format then *.csv
model_path = max(list_of_files, key=os.path.getctime)
print("Generating ONNX from model:", model_path)
model = torch.load(model_path)
input_sequences = [
"SRSLVISTINQISEDSKEFYFTLDNGKTMFPSNSQAWGGEKFENGQRAFVIFNELEQPVNGYDYNIQVRDITKVLTKEIVTMDDEE" \
"NTEEKIGDDKINATYMWISKDKKYLTIEFQYYSTHSEDKKHFLNLVINNKDNTDDEYINLEFRHNSERDSPDHLGEGYVSFKLDKI" \
"EEQIEGKKGLNIRVRTLYDGIKNYKVQFP"]
input_sequences_encoded = list(torch.IntTensor(encode_primary_string(aa))
for aa in input_sequences)
print("Exporting to ONNX...")
output_path = "./tests/output/openprotein.onnx"
onnx_from_model(model, input_sequences_encoded, output_path)
print("Wrote ONNX to", output_path)
示例9: torch2tvm_module
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def torch2tvm_module(torch_module: torch.nn.Module, torch_inputs: Tuple[torch.Tensor, ...], target):
torch_module.eval()
input_names = []
input_shapes = {}
with torch.no_grad():
for index, torch_input in enumerate(torch_inputs):
name = "i" + str(index)
input_names.append(name)
input_shapes[name] = torch_input.shape
buffer = io.BytesIO()
torch.onnx.export(torch_module, torch_inputs, buffer, input_names=input_names, output_names=["o" + str(i) for i in range(len(torch_inputs))])
outs = torch_module(*torch_inputs)
buffer.seek(0, 0)
onnx_model = onnx.load_model(buffer)
relay_module, params = tvm.relay.frontend.from_onnx(onnx_model, shape=input_shapes)
with tvm.relay.build_config(opt_level=3):
graph, tvm_module, params = tvm.relay.build(relay_module, target, params=params)
return graph, tvm_module, params
示例10: convert_to_onnx
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def convert_to_onnx(model, input_shape, output_file, input_names, output_names):
"""Convert PyTorch model to ONNX and check the resulting onnx model"""
output_file.parent.mkdir(parents=True, exist_ok=True)
model.eval()
dummy_input = torch.randn(input_shape)
model(dummy_input)
torch.onnx.export(model, dummy_input, str(output_file), verbose=False,
input_names=input_names.split(','), output_names=output_names.split(','))
# Model check after conversion
model = onnx.load(str(output_file))
try:
onnx.checker.check_model(model)
print('ONNX check passed successfully.')
except onnx.onnx_cpp2py_export.checker.ValidationError as exc:
sys.exit('ONNX check failed with error: ' + str(exc))
示例11: export_onnx_model
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def export_onnx_model(model, inputs, passes):
"""Trace and export a model to onnx format. Modified from
https://github.com/facebookresearch/detectron2/
Args:
model (nn.Module):
inputs (tuple[args]): the model will be called by `model(*inputs)`
passes (None or list[str]): the optimization passed for ONNX model
Returns:
an onnx model
"""
assert isinstance(model, torch.nn.Module)
# make sure all modules are in eval mode, onnx may change the training
# state of the module if the states are not consistent
def _check_eval(module):
assert not module.training
model.apply(_check_eval)
# Export the model to ONNX
with torch.no_grad():
with io.BytesIO() as f:
torch.onnx.export(
model,
inputs,
f,
operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK,
# verbose=True, # NOTE: uncomment this for debugging
# export_params=True,
)
onnx_model = onnx.load_from_string(f.getvalue())
# Apply ONNX's Optimization
if passes is not None:
all_passes = optimizer.get_available_passes()
assert all(p in all_passes for p in passes), \
f'Only {all_passes} are supported'
onnx_model = optimizer.optimize(onnx_model, passes)
return onnx_model
示例12: export_onnx
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def export_onnx(path, batch_size, seq_len):
print('The model is also exported in ONNX format at {}'.
format(os.path.realpath(args.onnx_export)))
model.eval()
dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device)
hidden = model.init_hidden(batch_size)
torch.onnx.export(model, (dummy_input, hidden), path)
# Loop over epochs.
示例13: export
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def export(dir):
dummy_input = Variable(torch.randn(1, 3, 4, 4))
model = broadcast_mul()
model.eval()
torch.save(model.state_dict(),os.path.join(dir,"broadcast_mul.pth"))
onnx.export(model, dummy_input,os.path.join(dir,"broadcast_mul.onnx"), verbose=True)
示例14: export
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def export(dir):
file_path = os.path.realpath(__file__)
file_dir = os.path.dirname(file_path)
dummy_input = Variable(torch.randn(1, 3, 32, 32))
model = ResNet34()
# model = load_network(model,os.path.join(file_dir,'..','model','pose_v02.pth'))
model.eval()
torch.save(model.state_dict(),os.path.join(dir,"resnet.pth"))
onnx.export(model, dummy_input,os.path.join(dir,"resnet.onnx"), verbose=True)
示例15: export
# 需要导入模块: import torch [as 别名]
# 或者: from torch import onnx [as 别名]
def export(dir):
file_path = os.path.realpath(__file__)
file_dir = os.path.dirname(file_path)
dummy_input = Variable(torch.randn(1, 3, 32, 32))
model = GoogLeNet()
# model = load_network(model,os.path.join(file_dir,'..','model','pose_v02.pth'))
model.eval()
torch.save(model.state_dict(),os.path.join(dir,"googlenet.pth"))
onnx.export(model, dummy_input,os.path.join(dir,"googlenet.onnx"), verbose=True)