当前位置: 首页>>代码示例>>Python>>正文


Python torch.ones_like方法代码示例

本文整理汇总了Python中torch.ones_like方法的典型用法代码示例。如果您正苦于以下问题:Python torch.ones_like方法的具体用法?Python torch.ones_like怎么用?Python torch.ones_like使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch的用法示例。


在下文中一共展示了torch.ones_like方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: initialize

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def initialize(self, parameters: Tuple[Parameter, ...], *args):
        stacked = stacker(parameters, lambda u: u.t_values)

        self._mean = torch.zeros(stacked.concated.shape[1:], device=stacked.concated.device)
        self._log_std = torch.ones_like(self._mean)

        for p, msk in zip(parameters, stacked.mask):
            try:
                self._mean[msk] = p.bijection.inv(p.distr.mean)
            except NotImplementedError:
                pass

        self._mean.requires_grad_(True)
        self._log_std.requires_grad_(True)

        return self 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:18,代码来源:meanfield.py

示例2: test_Stacker

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_Stacker(self):
        # ===== Define a mix of parameters ====== #
        zerod = Parameter(Normal(0., 1.)).sample_((1000,))
        oned_luring = Parameter(Normal(torch.tensor([0.]), torch.tensor([1.]))).sample_(zerod.shape)
        oned = Parameter(MultivariateNormal(torch.zeros(2), torch.eye(2))).sample_(zerod.shape)

        mu = torch.zeros((3, 3))
        norm = Independent(Normal(mu, torch.ones_like(mu)), 2)
        twod = Parameter(norm).sample_(zerod.shape)

        # ===== Stack ===== #
        params = (zerod, oned, oned_luring, twod)
        stacked = stacker(params, lambda u: u.t_values, dim=1)

        # ===== Verify it's recreated correctly ====== #
        for p, m, ps in zip(params, stacked.mask, stacked.prev_shape):
            v = stacked.concated[..., m]

            if len(p.c_shape) != 0:
                v = v.reshape(*v.shape[:-1], *ps)

            assert (p.t_values == v).all() 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:24,代码来源:utils.py

示例3: test_MultiDimensional

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_MultiDimensional(self):
        mu = torch.zeros(2)
        scale = torch.ones_like(mu)

        shape = 1000, 100

        mvn = Independent(Normal(mu, scale), 1)
        mvn = AffineProcess((f, g), (1., 1.), mvn, mvn)

        # ===== Initialize ===== #
        x = mvn.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(mvn.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape, *mu.shape]))

        # ===== Sample path ===== #
        path = mvn.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:26,代码来源:timeseries.py

示例4: tforward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def tforward(self, disp0, im, std=None):
    self.pattern = self.pattern.to(disp0.device)
    self.uv0 = self.uv0.to(disp0.device)

    uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
    uv1 = torch.empty_like(uv0)
    uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
    uv1[...,1] = uv0[...,1]

    uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
    uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
    uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
    pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
    pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
    mask = torch.ones_like(im)
    if std is not None:
      mask = mask*std

    diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
    val = (mask*diff).sum() / mask.sum()
    return val, pattern_proj 
开发者ID:autonomousvision,项目名称:connecting_the_dots,代码行数:23,代码来源:networks.py

示例5: test_sample_and_log_prob_with_context

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_sample_and_log_prob_with_context(self):
        num_samples = 10
        context_size = 20
        input_shape = [2, 3, 4]
        context_shape = [2, 3, 4]

        dist = discrete.ConditionalIndependentBernoulli(input_shape)
        context = torch.randn(context_size, *context_shape)
        samples, log_prob = dist.sample_and_log_prob(num_samples, context=context)

        self.assertIsInstance(samples, torch.Tensor)
        self.assertIsInstance(log_prob, torch.Tensor)

        self.assertEqual(samples.shape, torch.Size([context_size, num_samples] + input_shape))
        self.assertEqual(log_prob.shape, torch.Size([context_size, num_samples]))

        self.assertFalse(torch.isnan(log_prob).any())
        self.assertFalse(torch.isinf(log_prob).any())
        self.assert_tensor_less_equal(log_prob, 0.0)

        self.assertFalse(torch.isnan(samples).any())
        self.assertFalse(torch.isinf(samples).any())
        binary = (samples == 1.0) | (samples == 0.0)
        self.assertEqual(binary, torch.ones_like(binary)) 
开发者ID:bayesiains,项目名称:nsf,代码行数:26,代码来源:discrete_test.py

示例6: weighted_cross_entropy_loss

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def weighted_cross_entropy_loss(preds, edges):
    """ Calculate sum of weighted cross entropy loss. """
    # Reference:
    #   hed/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp
    #   https://github.com/s9xie/hed/issues/7
    mask = (edges > 0.5).float()
    b, c, h, w = mask.shape
    num_pos = torch.sum(mask, dim=[1, 2, 3], keepdim=True).float()  # Shape: [b,].
    num_neg = c * h * w - num_pos                     # Shape: [b,].
    weight = torch.zeros_like(mask)
    #weight[edges > 0.5]  = num_neg / (num_pos + num_neg)
    #weight[edges <= 0.5] = num_pos / (num_pos + num_neg)
    weight.masked_scatter_(edges > 0.5,
        torch.ones_like(edges) * num_neg / (num_pos + num_neg))
    weight.masked_scatter_(edges <= 0.5,
        torch.ones_like(edges) * num_pos / (num_pos + num_neg))
    # Calculate loss.
    # preds=torch.sigmoid(preds)
    losses = F.binary_cross_entropy_with_logits(
        preds.float(), edges.float(), weight=weight, reduction='none')
    loss = torch.sum(losses) / b
    return loss 
开发者ID:xavysp,项目名称:DexiNed,代码行数:24,代码来源:losses.py

示例7: test_parallel_transport0_preserves_inner_products

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_parallel_transport0_preserves_inner_products(a, k):
    man = lorentz.Lorentz(k=k)
    a = man.projx(a)

    v_0 = torch.rand_like(a) + 1e-5
    u_0 = torch.rand_like(a) + 1e-5

    zero = torch.ones_like(a)
    d = zero.size(1) - 1
    zero = torch.cat(
        (zero.narrow(1, 0, 1) * torch.sqrt(k), zero.narrow(1, 1, d) * 0.0), dim=1
    )

    v_0 = man.proju(zero, v_0)  # project on tangent plane
    u_0 = man.proju(zero, u_0)  # project on tangent plane

    v_a = man.transp0(a, v_0)
    u_a = man.transp0(a, u_0)

    vu_0 = man.inner(v_0, u_0, keepdim=True)
    vu_a = man.inner(v_a, u_a, keepdim=True)
    np.testing.assert_allclose(vu_a, vu_0, atol=1e-5, rtol=1e-5) 
开发者ID:geoopt,项目名称:geoopt,代码行数:24,代码来源:test_lorentz_math.py

示例8: test_parallel_transport0_back

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_parallel_transport0_back(a, b, k):
    man = lorentz.Lorentz(k=k)
    a = man.projx(a)
    b = man.projx(b)

    v_0 = torch.rand_like(a) + 1e-5
    v_0 = man.proju(a, v_0)  # project on tangent plane

    zero = torch.ones_like(a)
    d = zero.size(1) - 1
    zero = torch.cat(
        (zero.narrow(1, 0, 1) * torch.sqrt(k), zero.narrow(1, 1, d) * 0.0), dim=1
    )

    v_t = man.transp0back(a, v_0)
    v_t = man.transp0(b, v_t)

    v_s = man.transp(a, zero, v_0)
    v_s = man.transp(zero, b, v_s)

    np.testing.assert_allclose(v_t, v_s, atol=1e-5, rtol=1e-5) 
开发者ID:geoopt,项目名称:geoopt,代码行数:23,代码来源:test_lorentz_math.py

示例9: test_zero_point_ops

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def test_zero_point_ops(a, k):
    man = lorentz.Lorentz(k=k)
    a = man.projx(a)

    zero = torch.ones_like(a)
    d = zero.size(1) - 1
    zero = torch.cat(
        (zero.narrow(1, 0, 1) * torch.sqrt(k), zero.narrow(1, 1, d) * 0.0), dim=1
    )
    inner_z = man.inner0(a)
    inner = man.inner(None, a, zero)
    np.testing.assert_allclose(inner, inner_z, atol=1e-5, rtol=1e-5)

    lmap_z = man.logmap0back(a)
    lmap = man.logmap(a, zero)

    np.testing.assert_allclose(lmap, lmap_z, atol=1e-5, rtol=1e-5) 
开发者ID:geoopt,项目名称:geoopt,代码行数:19,代码来源:test_lorentz_math.py

示例10: __getitem__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def __getitem__(self, idx):
        '''

        :param idx: Index of the image file
        :return: returns the image and corresponding label file.
        '''
        image_name = self.imList[idx]
        label_name = self.labelList[idx]
        image = cv2.imread(image_name)
        label = cv2.imread(label_name, 0)
        label_bool = 255 * ((label > 200).astype(np.uint8))

        if self.transform:
            [image, label] = self.transform(image, label_bool)
        if self.edge:
            np_label = 255 * label.data.numpy().astype(np.uint8)
            kernel = np.ones((self.kernel_size , self.kernel_size ), np.uint8)
            erosion = cv2.erode(np_label, kernel, iterations=1)
            dilation = cv2.dilate(np_label, kernel, iterations=1)
            boundary = dilation - erosion
            edgemap = 255 * torch.ones_like(label)
            edgemap[torch.from_numpy(boundary) > 0] = label[torch.from_numpy(boundary) > 0]
            return (image, label, edgemap)
        else:
            return (image, label) 
开发者ID:clovaai,项目名称:ext_portrait_segmentation,代码行数:27,代码来源:DataSet.py

示例11: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def forward(self, input, adj):
        h = torch.mm(input, self.W)
        N = h.size()[0]

        f_1 = torch.matmul(h, self.a1)
        f_2 = torch.matmul(h, self.a2)
        e = self.leakyrelu(f_1 + f_2.transpose(0,1))

        zero_vec = -9e15*torch.ones_like(e)
        attention = torch.where(adj > 0, e, zero_vec)
        attention = F.softmax(attention, dim=1)
        attention = F.dropout(attention, self.dropout, training=self.training)
        h_prime = torch.matmul(attention, h)

        if self.concat:
            return F.elu(h_prime)
        else:
            return h_prime 
开发者ID:meliketoy,项目名称:graph-cnn.pytorch,代码行数:20,代码来源:layers.py

示例12: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def forward(self, x):
        """
        Forward pass through adaptation network.
        :param x: (torch.tensor) Input representation to network (task level representation z).
        :return: (list::dictionaries) Dictionary for every block in layer. Dictionary contains all the parameters
                 necessary to adapt layer in base network. Base network is aware of dict structure and can pull params
                 out during forward pass.
        """
        x = self.shared_layer(x)
        block_params = []
        for block in range(self.num_blocks):
            block_param_dict = {
                'gamma1': self.gamma1_processors[block](x).squeeze() * self.gamma1_regularizers[block] +
                          torch.ones_like(self.gamma1_regularizers[block]),
                'beta1': self.beta1_processors[block](x).squeeze() * self.beta1_regularizers[block],
                'gamma2': self.gamma2_processors[block](x).squeeze() * self.gamma2_regularizers[block] +
                          torch.ones_like(self.gamma2_regularizers[block]),
                'beta2': self.beta2_processors[block](x).squeeze() * self.beta2_regularizers[block]
            }
            block_params.append(block_param_dict)
        return block_params 
开发者ID:cambridge-mlg,项目名称:cnaps,代码行数:23,代码来源:adaptation_networks.py

示例13: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def forward(self, x):
        if (not self.training or self.keep_prob==1): #set keep_prob=1 to turn off dropblock
            return x
        if self.gamma is None:
            self.gamma = self.calculate_gamma(x)
        if x.type() == 'torch.cuda.HalfTensor': #TODO: not fully support for FP16 now 
            FP16 = True
            x = x.float()
        else:
            FP16 = False
        p = torch.ones_like(x) * (self.gamma)
        mask = 1 - torch.nn.functional.max_pool2d(torch.bernoulli(p),
                                                  self.kernel_size,
                                                  self.stride,
                                                  self.padding)

        out =  mask * x * (mask.numel()/mask.sum())

        if FP16:
            out = out.half()
        return out 
开发者ID:ruinmessi,项目名称:ASFF,代码行数:23,代码来源:network_blocks.py

示例14: loss_discriminator

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def loss_discriminator(
        self, z, batch_index, predict_true_class=True, return_details=True
    ):

        n_classes = self.gene_dataset.n_batches
        cls_logits = torch.nn.LogSoftmax(dim=1)(self.discriminator(z))

        if predict_true_class:
            cls_target = one_hot(batch_index, n_classes)
        else:
            one_hot_batch = one_hot(batch_index, n_classes)
            cls_target = torch.zeros_like(one_hot_batch)
            # place zeroes where true label is
            cls_target.masked_scatter_(
                ~one_hot_batch.bool(), torch.ones_like(one_hot_batch) / (n_classes - 1)
            )

        l_soft = cls_logits * cls_target
        loss = -l_soft.sum(dim=1).mean()

        return loss 
开发者ID:YosefLab,项目名称:scVI,代码行数:23,代码来源:total_inference.py

示例15: _load_from_state_dict

# 需要导入模块: import torch [as 别名]
# 或者: from torch import ones_like [as 别名]
def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        version = local_metadata.get("version", None)

        if version is None or version < 2:
            # No running_mean/var in early versions
            # This will silent the warnings
            if prefix + "running_mean" not in state_dict:
                state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean)
            if prefix + "running_var" not in state_dict:
                state_dict[prefix + "running_var"] = torch.ones_like(self.running_var)

        if version is not None and version < 3:
            # logger = logging.getLogger(__name__)
            logging.info("FrozenBatchNorm {} is upgraded to version 3.".format(prefix.rstrip(".")))
            # In version < 3, running_var are used without +eps.
            state_dict[prefix + "running_var"] -= self.eps

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        ) 
开发者ID:LikeLy-Journey,项目名称:SegmenTron,代码行数:24,代码来源:batch_norm.py


注:本文中的torch.ones_like方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。