本文整理汇总了Python中torch.nn.utils.clip_grad_norm方法的典型用法代码示例。如果您正苦于以下问题:Python utils.clip_grad_norm方法的具体用法?Python utils.clip_grad_norm怎么用?Python utils.clip_grad_norm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.utils
的用法示例。
在下文中一共展示了utils.clip_grad_norm方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: step
# 需要导入模块: from torch.nn import utils [as 别名]
# 或者: from torch.nn.utils import clip_grad_norm [as 别名]
def step(self):
"""Update the model parameters based on current gradients.
Optionally, will employ gradient modification or update learning
rate.
"""
self._step += 1
# Decay method used in tensor2tensor.
if self.decay_method == "noam":
self._set_rate(
self.original_lr *
(self.model_size ** (-0.5) *
min(self._step ** (-0.5),
self._step * self.warmup_steps**(-1.5))))
if self.max_grad_norm:
total_norm = clip_grad_norm(self.params, self.max_grad_norm)
self.optimizer.step()
示例2: train
# 需要导入模块: from torch.nn import utils [as 别名]
# 或者: from torch.nn.utils import clip_grad_norm [as 别名]
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
if args.no_partialbn:
model.module.partialBN(False)
else:
model.module.partialBN(True)
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1,5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print(('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'])))
示例3: train
# 需要导入模块: from torch.nn import utils [as 别名]
# 或者: from torch.nn.utils import clip_grad_norm [as 别名]
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target,vid) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)[0]
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1,5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
log.l.info("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
log.l.info(('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'])))