当前位置: 首页>>代码示例>>Python>>正文


Python batchnorm._BatchNorm方法代码示例

本文整理汇总了Python中torch.nn.modules.batchnorm._BatchNorm方法的典型用法代码示例。如果您正苦于以下问题:Python batchnorm._BatchNorm方法的具体用法?Python batchnorm._BatchNorm怎么用?Python batchnorm._BatchNorm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.modules.batchnorm的用法示例。


在下文中一共展示了batchnorm._BatchNorm方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: init_weights

# 需要导入模块: from torch.nn.modules import batchnorm [as 别名]
# 或者: from torch.nn.modules.batchnorm import _BatchNorm [as 别名]
def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
        else:
            raise TypeError('pretrained must be a str or None') 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:27,代码来源:hrnet.py

示例2: init_weights

# 需要导入模块: from torch.nn.modules import batchnorm [as 别名]
# 或者: from torch.nn.modules.batchnorm import _BatchNorm [as 别名]
def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.dcn is not None:
                for m in self.modules():
                    if isinstance(m, Bottleneck) and hasattr(
                            m, 'conv2_offset'):
                        constant_init(m.conv2_offset, 0)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
        else:
            raise TypeError('pretrained must be a str or None') 
开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:27,代码来源:resnet.py

示例3: init_weights

# 需要导入模块: from torch.nn.modules import batchnorm [as 别名]
# 或者: from torch.nn.modules.batchnorm import _BatchNorm [as 别名]
def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
        else:
            raise TypeError('pretrained must be a str or None') 
开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:21,代码来源:hrnet.py

示例4: __init__

# 需要导入模块: from torch.nn.modules import batchnorm [as 别名]
# 或者: from torch.nn.modules.batchnorm import _BatchNorm [as 别名]
def __init__(self, c, k, stage_num=3):
        super(EMAU, self).__init__()
        self.stage_num = stage_num

        mu = torch.Tensor(1, c, k)
        mu.normal_(0, math.sqrt(2. / k))    # Init with Kaiming Norm.
        mu = self._l2norm(mu, dim=1)
        self.register_buffer('mu', mu)

        self.conv1 = nn.Conv2d(c, c, 1)
        self.conv2 = nn.Sequential(
            nn.Conv2d(c, c, 1, bias=False),
            norm_layer(c))        
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, _BatchNorm):
                m.weight.data.fill_(1)
                if m.bias is not None:
                    m.bias.data.zero_() 
开发者ID:XiaLiPKU,项目名称:EMANet,代码行数:24,代码来源:network.py

示例5: group_weight

# 需要导入模块: from torch.nn.modules import batchnorm [as 别名]
# 或者: from torch.nn.modules.batchnorm import _BatchNorm [as 别名]
def group_weight(module):
    group_decay = []
    group_no_decay = []
    for m in module.modules():
        if isinstance(m, nn.Linear):
            group_decay.append(m.weight)
            if m.bias is not None:
                group_no_decay.append(m.bias)
        elif isinstance(m, Conv2d):
            group_decay.append(m.weight)
            if m.bias is not None:
                group_no_decay.append(m.bias)
        elif isinstance(m, _BatchNorm):
            if m.weight is not None:
                group_no_decay.append(m.weight)
            if m.bias is not None:
                group_no_decay.append(m.bias)
        elif isinstance(m, GroupNorm):
            if m.weight is not None:
                group_no_decay.append(m.weight)
            if m.bias is not None:
                group_no_decay.append(m.bias)
    assert len(list(module.parameters())) == len(group_decay) + len(group_no_decay)
    return group_decay, group_no_decay 
开发者ID:pudae,项目名称:kaggle-understanding-clouds,代码行数:26,代码来源:train.py


注:本文中的torch.nn.modules.batchnorm._BatchNorm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。