当前位置: 首页>>代码示例>>Python>>正文


Python init.xavier_normal_方法代码示例

本文整理汇总了Python中torch.nn.init.xavier_normal_方法的典型用法代码示例。如果您正苦于以下问题:Python init.xavier_normal_方法的具体用法?Python init.xavier_normal_怎么用?Python init.xavier_normal_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.init的用法示例。


在下文中一共展示了init.xavier_normal_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def __init__(self, batch=32, bidirectional=True):

        super(BLSTM, self).__init__()
        
        self.bidirectional = bidirectional
        self.hidden = self.init_hidden(batch)
        self.lstm = nn.LSTM(257, 50, num_layers=2, bidirectional=True)  
        self.fc = nn.Linear(50*2,1)

        ## Weights initialization
        def _weights_init(m):
            if isinstance(m, nn.Conv2d or nn.Linear or nn.GRU or nn.LSTM):
                init.xavier_normal_(m.weight)
                m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        
        self.apply(_weights_init) 
开发者ID:jefflai108,项目名称:Attentive-Filtering-Network,代码行数:21,代码来源:recurrent_attention.py

示例2: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def __init__(self, dims, classifier_net=None):
        [x_dim, self.y_dim, z_dim, h_dim] = dims
        super(DeepGenerativeModel, self).__init__([x_dim, z_dim, h_dim])

        self.encoder = Encoder([x_dim + self.y_dim, h_dim, z_dim])
        self.decoder = Decoder([z_dim + self.y_dim, list(reversed(h_dim)), x_dim])
        if classifier_net is None:
            self.classifier = Classifier(net=None, dims=[x_dim, h_dim[0], self.y_dim])
        else:
            self.classifier = Classifier(classifier_net)

        # Init linear layers
        for m in self.modules():
            if isinstance(m, nn.Linear):
                init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_() 
开发者ID:lukasruff,项目名称:Deep-SAD-PyTorch,代码行数:19,代码来源:dgm.py

示例3: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def __init__(self, dims):
        super(VariationalAutoencoder, self).__init__()

        [x_dim, z_dim, h_dim] = dims
        self.z_dim = z_dim
        self.flow = None

        self.encoder = Encoder([x_dim, h_dim, z_dim])
        self.decoder = Decoder([z_dim, list(reversed(h_dim)), x_dim])
        self.kl_divergence = 0

        # Init linear layers
        for m in self.modules():
            if isinstance(m, nn.Linear):
                init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_() 
开发者ID:lukasruff,项目名称:Deep-SAD-PyTorch,代码行数:19,代码来源:vae.py

示例4: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_weights(net, init_type, init_gain):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)
    net.apply(init_func) 
开发者ID:ranahanocka,项目名称:MeshCNN,代码行数:20,代码来源:networks.py

示例5: weights_init

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def weights_init(m):
    '''
    Code from https://gist.github.com/jeasinema/ed9236ce743c8efaf30fa2ff732749f5
    Usage:
        model = Model()
        model.apply(weight_init)
    '''
    if isinstance(m, nn.Linear):
        init.xavier_normal_(m.weight.data)
        init.normal_(m.bias.data)
    elif isinstance(m, nn.GRUCell):
        for param in m.parameters():
            if len(param.shape) >= 2:
                init.orthogonal_(param.data)
            else:
                init.normal_(param.data) 
开发者ID:dmlc,项目名称:dgl,代码行数:18,代码来源:utils.py

示例6: init_splitted

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_splitted(layer, nb_clusters, sz_embedding):
    # initialize splitted embedding parts separately
    from math import ceil
    for c in range(nb_clusters):
        i = torch.arange(
            c * ceil(sz_embedding / nb_clusters),
            # cut off remaining indices, e.g. if > embedding size
            min(
                (c + 1) * ceil(
                    sz_embedding / nb_clusters
                ),
                sz_embedding
            )
        ).long()
        _layer = torch.nn.Linear(layer.weight.shape[1], len(i))
        layer.weight.data[i] = xavier_normal_(_layer.weight.data, gain = 1)
        layer.bias.data[i] = _layer.bias.data 
开发者ID:CompVis,项目名称:metric-learning-divide-and-conquer,代码行数:19,代码来源:model.py

示例7: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func) 
开发者ID:songdejia,项目名称:Siamese-RPN-pytorch,代码行数:25,代码来源:train_siamrpn.py

示例8: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1,
                 use_residual=True):
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Parameter(torch.FloatTensor(n_head, d_model, d_k))
        self.w_ks = nn.Parameter(torch.FloatTensor(n_head, d_model, d_k))
        self.w_vs = nn.Parameter(torch.FloatTensor(n_head, d_model, d_v))

        self.attention = ScaledDotProductAttention(d_model)
        self.layer_norm = LayerNormalization(d_model)
        self.proj = BottleLinear(n_head * d_v, d_model)

        self.dropout = nn.Dropout(dropout)
        self.use_residual = use_residual

        init.xavier_normal_(self.w_qs)
        init.xavier_normal_(self.w_ks)
        init.xavier_normal_(self.w_vs) 
开发者ID:thomas0809,项目名称:GraphIE,代码行数:24,代码来源:transformer.py

示例9: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func) 
开发者ID:Lotayou,项目名称:densebody_pytorch,代码行数:24,代码来源:networks.py

示例10: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Parameter(torch.FloatTensor(n_head, d_model, d_k))
        self.w_ks = nn.Parameter(torch.FloatTensor(n_head, d_model, d_k))
        self.w_vs = nn.Parameter(torch.FloatTensor(n_head, d_model, d_v))

        self.attention = ScaledDotProductAttention(d_model)
        self.layer_norm = LayerNormalization(d_model)

        self.proj = nn.Linear(n_head*d_v, d_model)
        init.xavier_normal_(self.proj.weight)

        self.dropout = nn.Dropout(dropout)

        init.xavier_normal_(self.w_qs)
        init.xavier_normal_(self.w_ks)
        init.xavier_normal_(self.w_vs) 
开发者ID:xwhan,项目名称:One-shot-Relational-Learning,代码行数:24,代码来源:modules.py

示例11: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
	def init_func(m):
		classname = m.__class__.__name__
		if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
			if init_type == 'normal':
				init.normal_(m.weight.data, 0.0, gain)
			elif init_type == 'xavier':
				init.xavier_normal_(m.weight.data, gain=gain)
			elif init_type == 'kaiming':
				init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
			elif init_type == 'orthogonal':
				init.orthogonal_(m.weight.data, gain=gain)
			else:
				raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
			if hasattr(m, 'bias') and m.bias is not None:
				init.constant_(m.bias.data, 0.0)
		elif classname.find('BatchNorm2d') != -1:
			init.normal_(m.weight.data, 1.0, gain)
			init.constant_(m.bias.data, 0.0)
	
	print('initialize network with %s' % init_type)
	net.apply(init_func) 
开发者ID:Luodian,项目名称:MADAN,代码行数:24,代码来源:networks.py

示例12: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func)


############################################
# save checkpoint and resume
############################################ 
开发者ID:songdejia,项目名称:DeepLab_v3_plus,代码行数:30,代码来源:util.py

示例13: initialize_weight

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def initialize_weight(self):
        for m in self.modules():
            #print('need check init')
            if isinstance(m, nn.Conv2d):
                init.xavier_normal_(m.weight)
                #init.normal_(m.weight, std = 0.01)
                if m.bias is not None:
                    init.constant_(m.bias, 0.0)
            else: 
                try:init.constant_(m.weight,0.0)
                except:pass 
开发者ID:HaiyangLiu1997,项目名称:Pytorch-Networks,代码行数:13,代码来源:OpenPose2017.py

示例14: initilization

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def initilization(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.xavier_normal_(m.weight)
                #init.normal_(m.weight, std=0.01)
                if m.bias is not None:  
                    init.constant_(m.bias, 0.0)
            else:
                try:init.constant_(m.weight,0.0)
                except:pass 
开发者ID:HaiyangLiu1997,项目名称:Pytorch-Networks,代码行数:12,代码来源:OpenPose2017.py

示例15: setup_layers

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import xavier_normal_ [as 别名]
def setup_layers(self):
        """
        Adding Base Layers, Deep Signed GraphSAGE layers.
        Assing Regression Parameters if the model is not a single layer model.
        """
        self.nodes = range(self.X.shape[0])
        self.neurons = self.args.layers
        self.layers = len(self.neurons)
        self.positive_base_aggregator = SignedSAGEConvolutionBase(self.X.shape[1]*2,
                                                                  self.neurons[0]).to(self.device)

        self.negative_base_aggregator = SignedSAGEConvolutionBase(self.X.shape[1]*2,
                                                                  self.neurons[0]).to(self.device)
        self.positive_aggregators = []
        self.negative_aggregators = []
        for i in range(1, self.layers):
            self.positive_aggregators.append(SignedSAGEConvolutionDeep(3*self.neurons[i-1],
                                                                       self.neurons[i]).to(self.device))

            self.negative_aggregators.append(SignedSAGEConvolutionDeep(3*self.neurons[i-1],
                                                                       self.neurons[i]).to(self.device))

        self.positive_aggregators = ListModule(*self.positive_aggregators)
        self.negative_aggregators = ListModule(*self.negative_aggregators)
        self.regression_weights = Parameter(torch.Tensor(4*self.neurons[-1], 3))
        init.xavier_normal_(self.regression_weights) 
开发者ID:benedekrozemberczki,项目名称:SGCN,代码行数:28,代码来源:sgcn.py


注:本文中的torch.nn.init.xavier_normal_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。